NOÇÕES BÁSICAS DE QIELETRICO

Documentação, Verificação e Impressão

Análise e Verificação de Projeto

Introdução

A etapa de **análise e verificação** é fundamental para garantir a qualidade, segurança e funcionalidade de um projeto elétrico predial. Mesmo com o uso de ferramentas automatizadas como o **QiElétrico**, que realizam cálculos e dimensionamentos com base em normas técnicas, o controle de consistência e a validação técnica são indispensáveis antes da finalização e emissão dos documentos do projeto. Esse processo envolve a **verificação de erros e inconsistências**, o **ajuste de ligações e circuitos** e, quando possível, a **simulação do funcionamento do sistema** para antecipar eventuais falhas operacionais. Este texto aborda os principais procedimentos de verificação no QiElétrico, com base nas exigências da NBR 5410 e nas boas práticas da engenharia elétrica.

Verificação de Erros e Inconsistências

Durante o desenvolvimento do projeto, é comum que ocorram inconsistências como circuitos desconectados, sobrecargas, lançamentos incorretos de condutores, elementos sem associação, entre outros. O QiElétrico oferece mecanismos automáticos para detecção e sinalização desses problemas por meio de um sistema de validação contínua.

Tipos de Erros Identificáveis

O software é capaz de identificar e sinalizar:

- Pontos elétricos não conectados a circuitos;
- Quadros sem alimentação definida;
- Condutores com seção insuficiente para a corrente projetada;
- Disjuntores incompatíveis com a proteção exigida;
- Queda de tensão superior aos limites normativos;
- Circuitos mal distribuídos entre fases;
- Cargas não atribuídas corretamente a redes ou quadros;
- Ausência de dispositivos de proteção obrigatórios, como DR ou DPS.

A verificação é realizada com base nas configurações técnicas do projeto e nos critérios normativos definidos pela NBR 5410, sendo possível configurar os parâmetros de aceitação conforme as exigências do projetista, cliente ou concessionária.

Alertas e Diagnóstico Visual

O QiElétrico apresenta os erros por meio de **alertas visuais** diretamente na planta baixa ou no diagrama unifilar. Ícones de advertência indicam os pontos problemáticos e, ao clicar sobre eles, o software exibe mensagens explicativas com sugestões de correção. Isso permite uma identificação rápida e eficiente dos erros, reduzindo o tempo de revisão e aumentando a precisão do projeto.

Ajuste de Ligações e Circuitos

Após a identificação de inconsistências, é necessário realizar os **ajustes manuais ou automáticos** nas ligações elétricas e nos agrupamentos de circuitos. O QiElétrico oferece ferramentas específicas para reconfigurar conexões, redistribuir cargas e realocar pontos de uso em circuitos distintos.

Reorganização de Circuitos

O projetista pode, por exemplo:

- Mover pontos de iluminação ou tomadas de um circuito para outro;
- Dividir circuitos sobrecarregados em dois ou mais ramais independentes;
- Criar subquadros para descentralizar a distribuição;
- Balancear a carga entre as fases de uma rede trifásica.

A cada modificação realizada, o software atualiza automaticamente os cálculos de carga, corrente, condutores e dispositivos de proteção, refletindo essas alterações nos relatórios e diagramas.

Ajuste de Ligações Gráficas

Na área gráfica, é possível editar os trechos de ligação entre componentes, modificar o traçado de eletrodutos, ajustar pontos de conexão e reposicionar dispositivos, preservando a integridade do modelo BIM. O QiElétrico também oferece a opção de **reatribuição automática de conexões**, com base na proximidade dos elementos e nas regras técnicas do projeto.

Simulação de Funcionamento

Embora o QiElétrico não opere com simulações elétricas em tempo real como softwares de sistemas de potência, ele permite uma **validação lógica e funcional** do projeto por meio da verificação de conexões e consistência de dados.

Validação Funcional

Os recursos de simulação no QiElétrico incluem:

- Verificação do caminho da corrente elétrica entre a fonte (alimentação geral) e os pontos de carga;
- Checagem da integridade do circuito: todos os elementos devem estar corretamente conectados entre si;
- Validação do acionamento de comandos: interruptores devem estar associados aos pontos de luz, conforme a lógica de operação desejada;
 - Simulação da sequência de alimentação: o software verifica se os quadros estão corretamente encadeados, com alimentadores compatíveis e disjuntores correspondentes.

Essas validações permitem ao projetista antecipar falhas operacionais, como pontos de luz sem controle, tomadas não alimentadas, quadros sem carga ou dispositivos de proteção com dimensionamento incorreto.

Boas Práticas na Verificação

Além das funcionalidades oferecidas pelo software, é importante que o projetista adote boas práticas na verificação do projeto, como:

• Realizar revisões sistemáticas por pavimento e por quadro;

- Conferir visualmente a coerência entre planta baixa e diagrama unifilar;
- Validar a nomenclatura dos circuitos e quadros;
- Checar se todos os dispositivos obrigatórios estão inseridos conforme exigências legais e da concessionária;
- Garantir que os parâmetros de cálculo estejam configurados corretamente (temperatura, agrupamento, método de instalação, etc.).

A etapa de verificação também deve ser documentada, com geração de **relatórios de validação**, disponíveis no próprio QiElétrico, que podem ser arquivados como parte da documentação técnica para aprovação ou auditoria.

Considerações Finais

A análise e verificação do projeto elétrico no QiElétrico é uma fase essencial para garantir a robustez técnica, a conformidade normativa e a viabilidade prática da instalação. O software oferece recursos poderosos para detectar erros, ajustar conexões e simular o funcionamento lógico dos sistemas, contribuindo para um projeto mais seguro, eficiente e confiável.

O domínio dessas ferramentas não substitui o conhecimento técnico do projetista, mas o potencializa, permitindo decisões mais rápidas, precisas e fundamentadas. Ao combinar automatização com revisão crítica, o profissional assegura que o projeto atenda aos padrões exigidos pela legislação e pelo mercado da construção civil.

Referências Bibliográficas

- ALTOQI. QiElétrico Manual do Usuário. Florianópolis: AltoQi Tecnologia, 2023.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR
 5410: Instalações Elétricas de Baixa Tensão. Rio de Janeiro: ABNT,
 2004.
- GOMES, E. R.; LIMA, F. M. Projetos Elétricos Prediais Teoria e
 Prática com Softwares Aplicados. São Paulo: Érica, 2020.
- MENEZES, L. A. BIM para Projetos Elétricos: Conceitos e Aplicações Práticas. Rio de Janeiro: Elsevier, 2021.
- SILVA, A. D. Instalações Elétricas: Prática e Projeto. São Paulo: LTC, 2019.

Geração de Diagramas e Detalhamentos no QiElétrico: Diagrama Unifilar, Tabelas e Representação de Eletrodutos

Introdução

A geração de diagramas e detalhamentos técnicos constitui uma etapa essencial para a documentação, validação e execução de projetos elétricos prediais. No contexto da modelagem BIM, softwares como o QiElétrico oferecem ferramentas automatizadas que permitem transformar o modelo digital da instalação em representações gráficas precisas, normatizadas e prontas para impressão. Dentre os elementos gerados destacam-se o diagrama unifilar completo, as tabelas de carga, quadros e fiação, e os detalhes gráficos do traçado de eletrodutos e caixas de passagem. Este texto explora essas funcionalidades, destacando seus critérios técnicos, aplicações práticas e conformidade com as normas vigentes.

Diagrama Unifilar Completo

O diagrama unifilar é uma representação gráfica simplificada da instalação elétrica, que mostra de forma linear os elementos do sistema: alimentação, quadros, circuitos, condutores e dispositivos de proteção. No QiElétrico, esse diagrama é gerado automaticamente a partir dos dados inseridos no modelo da edificação.

Conteúdo do Diagrama

O diagrama unifilar completo gerado pelo QiElétrico inclui:

• Rede de alimentação geral, com a indicação da origem da energia;

- Quadros de distribuição com suas respectivas cargas e circuitos;
- Circuitos terminais com potências totais e número de fases;
- Condutores e suas seções nominais, tipos de isolação e número de vias;
- Disjuntores e dispositivos de proteção, com as respectivas correntes nominais;
- Símbolos normalizados, facilitando a leitura por engenheiros, técnicos e eletricistas.

O diagrama é automaticamente atualizado a cada modificação feita no projeto e pode ser reorganizado graficamente para melhor apresentação. Além disso, respeita os critérios técnicos da **NBR 5444**, que estabelece convenções gráficas para esquemas elétricos.

Utilização do Diagrama

O diagrama unifilar é indispensável para:

- Aprovação do projeto junto a concessionárias de energia e órgãos públicos;
- Execução da instalação elétrica em campo;
- Análise e manutenção posterior da rede elétrica;
- Verificação de seletividade, coordenação e balanceamento das cargas.

A automatização desse processo no QiElétrico evita erros comuns em representações manuais e assegura a integridade da documentação técnica.

Tabelas de Carga, Quadros e Fiação

Além dos diagramas, o QiElétrico também gera automaticamente **tabelas técnicas** que documentam os principais dados do projeto. Essas tabelas são essenciais para dimensionamento, execução, fiscalização e orçamento.

Tabela de Carga

Inclui a descrição dos circuitos, potências instaladas e demandadas, fator de demanda e corrente elétrica de projeto. Essa tabela permite:

- Verificação do equilíbrio de cargas entre fases;
- Cálculo da corrente total por quadro;
- Comparação com a capacidade dos condutores e disjuntores.

Tabela de Quadros

Exibe a hierarquia entre os quadros, suas potências totais, cargas conectadas, tensões de alimentação, tipos de proteção geral, reserva técnica e observações específicas. Facilita a visualização da estrutura da rede e a distribuição de circuitos.

Tabela de Fiação

Apresenta os dados dos condutores utilizados em cada circuito, como:

- Tipo de cabo e número de vias;
- Seção nominal dos condutores;
- Comprimento estimado;
- Tipo de isolação e método de instalação.

Essas informações são fundamentais para a aquisição de materiais e para o planejamento da instalação em campo. O QiElétrico também permite exportar essas tabelas em formatos editáveis (como CSV ou Excel), facilitando sua integração em planilhas de custo e planejamento de obra.

Detalhes de Passagem e Traçado de Eletrodutos

O traçado de eletrodutos e os detalhes de passagem são componentes gráficos que representam fisicamente como os cabos serão distribuídos dentro da edificação, por meio de eletrodutos, calhas ou bandejas.

Traçado de Eletrodutos

O software permite a representação do caminho dos eletrodutos, identificando:

- Percursos entre caixas, pontos e quadros;
- Diâmetros dos eletrodutos conforme o número e seção dos condutores;
- Materiais utilizados (PVC, aço galvanizado, etc.);
- Tipo de instalação (embutido, aparente, subterrâneo).

O QiElétrico realiza automaticamente o cálculo do diâmetro mínimo dos eletrodutos com base na área ocupada pelos cabos, utilizando como referência a Tabela 47 da NBR 5410, que define os limites de preenchimento por seção transversal.

Caixas de Passagem e Junção

Nas interseções de circuitos ou mudanças de direção, o software insere caixas de passagem, posicionadas conforme as regras de distanciamento máximo e acessibilidade.

Essas caixas são representadas na planta com identificação e podem ter suas dimensões ajustadas conforme a complexidade da ligação.

Vistas Detalhadas

O QiElétrico possibilita a geração de **detalhes ampliados** do traçado, em planta ou corte, para facilitar a execução da instalação. Esses detalhes podem ser incluídos nas pranchas de projeto ou apresentados separadamente para orientação da equipe de obra.

Considerações Finais

A geração automática de diagramas, tabelas e detalhes no QiElétrico representa uma inovação significativa no fluxo de trabalho do projetista elétrico. Ao centralizar todas as informações do projeto em um modelo BIM e permitir a produção automatizada de documentação técnica confiável e normatizada, o software reduz erros, aumenta a produtividade e facilita a comunicação entre os diversos profissionais envolvidos no processo construtivo.

Além disso, essas representações gráficas e tabulares são indispensáveis para aprovação legal do projeto, execução em campo e manutenção das instalações. O uso eficiente dessas ferramentas proporciona maior organização, transparência e profissionalismo à elaboração de projetos elétricos prediais.

Referências Bibliográficas

- ALTOQI. QiElétrico Manual do Usuário. Florianópolis: AltoQi Tecnologia, 2023.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR
 5410: Instalações Elétricas de Baixa Tensão. Rio de Janeiro: ABNT,
 2004.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR
 5444: Símbolos gráficos para instalações elétricas prediais. Rio de Janeiro: ABNT, 1989.
- MENEZES, L. A. BIM para Projetos Elétricos: Conceitos e Aplicações Práticas. Rio de Janeiro: Elsevier, 2021.
- GOMES, E. R.; LIMA, F. M. Projetos Elétricos Prediais Teoria e Prática com Softwares Aplicados. São Paulo: Érica, 2020.

Impressão e Exportação de Projetos no QiElétrico: Configuração de Pranchas, PDF e Arquivos DWG/DXF

Introdução

A última etapa do desenvolvimento de um projeto elétrico no QiElétrico envolve a preparação da documentação para impressão e exportação, permitindo a apresentação do trabalho de forma clara, técnica e profissional. Esta fase é fundamental não apenas para a entrega formal ao cliente ou à construtora, mas também para fins de aprovação legal junto a órgãos públicos e concessionárias de energia. O QiElétrico oferece ferramentas integradas para configurar folhas e pranchas, gerar arquivos PDF com qualidade gráfica e exportar plantas e diagramas em formatos como DWG ou DXF. Este texto aborda os principais procedimentos e critérios técnicos relacionados à configuração de impressão e exportação no QiElétrico.

Configuração de Folhas e Pranchas

Antes da impressão propriamente dita, é necessário configurar as **folhas e pranchas** do projeto. As pranchas reúnem os elementos gráficos que serão apresentados em papel ou arquivo, como planta baixa, diagrama unifilar, detalhes de ligação, tabelas de carga e demais vistas do modelo.

Definição do Tamanho de Folha

O QiElétrico permite selecionar formatos padronizados (A4, A3, A2, A1, A0) ou personalizar o tamanho da folha de acordo com as exigências do projeto.

O formato escolhido deve estar compatível com os elementos que serão apresentados, considerando:

- Escala da planta e legibilidade dos textos;
- Margens técnicas e carimbos de identificação;
- Espaço para tabelas e legendas.

O sistema também oferece a opção de definir **molduras e carimbos automáticos**, que podem ser personalizados com dados do projetista, cliente, título da prancha e outras informações técnicas.

Organização da Prancha

A organização das vistas em uma prancha pode ser feita por meio da **ferramenta de montagem de folhas**. O projetista pode posicionar, redimensionar e alinhar:

- Plantas baixas com os pontos e eletrodutos lançados;
- Diagramas elétricos;
- Tabelas de circuitos, cargas e materiais;
- Detalhes de ligação ou cortes técnicos.

Cada elemento inserido pode ser vinculado ao modelo BIM, permitindo que atualizações no projeto sejam refletidas automaticamente nas pranchas já configuradas.

Impressão em PDF

A geração de arquivos PDF é uma das formas mais utilizadas de entrega técnica, especialmente em processos digitais de aprovação e distribuição de projetos. O QiElétrico oferece um sistema de impressão que permite criar arquivos PDF com alta resolução e qualidade gráfica.

Configurações de Impressão

Ao imprimir, o usuário deve ajustar:

- Formato da folha correspondente ao definido na montagem da prancha;
- Escala de impressão, geralmente 1:50, 1:75 ou 1:100, conforme o detalhamento;
- Espessura das linhas (peso gráfico), importante para destacar elementos relevantes;
- Preto e branco ou colorido, conforme preferência ou exigência do contratante;
- Orientação da página (retrato ou paisagem), dependendo da disposição dos elementos.

O software permite a **pré-visualização da prancha**, garantindo que todos os elementos estejam visíveis e corretamente posicionados antes da impressão final.

Finalidade do PDF

O arquivo gerado em PDF pode ser utilizado para:

- Envio digital a clientes, construtoras e órgãos reguladores;
- Armazenamento em sistemas de gestão de projetos;

- Distribuição a campo para execução da obra;
- Protocolos e processos de aprovação em plataformas públicas.

A fidelidade gráfica e a padronização do PDF gerado no QiElétrico são vantagens importantes para a comunicação clara e eficiente entre os agentes envolvidos no projeto.

Exportação para DWG/DXF

Além da impressão em PDF, o QiElétrico também permite a **exportação dos desenhos e pranchas em formato DWG ou DXF**, compatíveis com softwares CAD (como AutoCAD). Essa funcionalidade é essencial quando há necessidade de integração com outras disciplinas (arquitetura, estrutura, hidráulica) ou quando o cliente exige arquivos editáveis.

Procedimentos de Exportação

A exportação pode ser feita diretamente da prancha ou da área gráfica do projeto. O usuário pode selecionar:

- Quais vistas ou elementos deseja exportar;
- O formato desejado (DWG ou DXF);
- A versão do arquivo (compatível com versões anteriores do AutoCAD, como 2010, 2013, 2018);
- A unidade de medida utilizada no projeto (milímetros ou metros);
- O sistema de camadas (layers), permitindo que os elementos sejam organizados em layers específicos por tipo (pontos, eletrodutos, texto, cotas).

Benefícios da Exportação em DWG/DXF

- Permite edição posterior em softwares CAD para ajustes ou compatibilização com outras disciplinas;
- Facilita a comunicação entre profissionais que não utilizam o QiElétrico;
- É exigido por muitas **construtoras e órgãos de licenciamento**, que requerem arquivos em formatos abertos;
- Permite a criação de arquivos base para revisão futura ou reaproveitamento em novos projetos.

Boas Práticas

Para garantir um processo de impressão e exportação eficiente e sem perda de qualidade, recomenda-se:

- Realizar a revisão completa do projeto antes da geração dos arquivos;
- Conferir **nomenclaturas**, escalas e legendas para evitar retrabalhos;
- Exportar arquivos DWG/DXF com organização por layers, facilitando a leitura por terceiros;
- Utilizar **nomes padronizados para arquivos e pranchas**, respeitando convenções do escritório ou exigências do cliente;
- Manter **cópias de segurança** dos arquivos gerados, tanto em PDF quanto em DWG/DXF.

Considerações Finais

A etapa de **impressão e exportação** no QiElétrico representa a transição entre a modelagem digital e a materialização do projeto técnico. Através das ferramentas automatizadas de configuração de pranchas, geração de PDF e exportação para DWG/DXF, o software assegura ao projetista a entrega de documentos organizados, normatizados e prontos para aplicação prática.

Além de agregar profissionalismo e clareza à apresentação do projeto, essa etapa é indispensável para a comunicação entre os diversos agentes envolvidos na obra — arquitetos, engenheiros, eletricistas e órgãos reguladores. O domínio dessas funcionalidades amplia a eficiência do trabalho do engenheiro eletricista e reforça a confiabilidade técnica de suas soluções.

Referências Bibliográficas

- ALTOQI. QiElétrico Manual do Usuário. Florianópolis: AltoQi Tecnologia, 2023.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR
 5410: Instalações Elétricas de Baixa Tensão. Rio de Janeiro: ABNT,
 2004.
- GOMES, E. R.; LIMA, F. M. Projetos Elétricos Prediais Teoria e Prática com Softwares Aplicados. São Paulo: Érica, 2020.
- MENEZES, L. A. BIM para Projetos Elétricos: Conceitos e Aplicações Práticas. Rio de Janeiro: Elsevier, 2021.
- ALVES, J. M. S. Desenho Técnico Elétrico com AutoCAD. São Paulo: LTC, 2018.