

ÍNDICE

OBJETIVO E CAMPO DE APLICAÇÃO	04
1. DEFINIÇÕES E SIMBOLOGIA	05
1.1 Unidades de medidas principais	05
1.2 Termos e critérios básicos adotados	06
1.3 Simbologia adotada em projetos de instalações internas	08
2. TIPOS DE INSTALAÇÕES INTERNAS RESIDENCIAIS E COMERCIAIS	10
2.1 Informações gerais	10
2.2 Prédios novos e já construídos sem instalação interna	11
2.3 Prédios habilitados com instalação interna de gás canalizado	13
2.4 Instalações unifamiliar com prumada única	15
2.5 Instalações comerciais	16
3. MATERIAIS E ACESSÓRIOS	17
3.1 Tubos e conexões	17
3.2 Dispositivos de bloqueio	18
3.3 Medidores	20
3.4 Elementos de regulagem e segurança	22
3.5 Acessórios	23
3.6 Juntas de transição	27
3.7 Especificação de materiais e acessórios	21
para instalações internas para gás natural	29
4. ASPECTOS CONSTRUTIVOS	34
4.1 Generalidades	34
	38
4.2 Proteção 4.3 Localização	40
4.4 Instalação interna/ramal interno	40
4.5 Revestimento	42
	42
4.6 Teste de estanqueidade	43
4.7 Purgação de instalações internas	44 45
4.8 Ponto de ligação de fogão a gás 5. LOCAL DE MEDIÇÃO DO GÁS	45
5.1 Generalidades	47
	59
5.2 Ventilação5.3 Medidores instalados em balcão de estabelecimentos comerciais	61
5.4 Medição coletiva em edifícios	64
	64
5.5 Medição a distância 6. CONDIÇÕES DAS INSTALAÇÕES E DAS	04
CONEXÕES DE APARELHOS A GÁS	65
6.1 Ventilação permanente (áreas mínimas)	65
6.2 Chaminés	68
7. DIMENSIONAMENTO DAS TUBULAÇÕES	75
7.1 Determinação do fator de Simultaneidade	78
7.1 Determinação do lator de Simultaneidade 7.2 Exemplos de dimensionamento de instalações internas	84
8. DOCUMENTAÇÃO DAS INSTALAÇÕES	88
8.1 Considerações gerais	88
9. REFERÊNCIAS NORMATIVAS	90

Objetivo e campo de aplicação

Este Manual de Instalações Prediais, da COPERGÁS, fixa as condições mínimas exigíveis para a elaboração de projeto e de execução das instalações internas destinadas ao uso do gás natural canalizado.

Este Manual se aplica a todas as edificações e construções em geral, com destinação residencial ou comercial, executadas, em execução e sujeitas a reforma e reconstrução.

Não são do âmbito deste Manual:

- a) As instalações de gases liquefeitos de petróleo (GLP).
- b) As edificações nas quais a utilização de gás combustível se destina a finalidades industriais que são objeto de Normas específicas, adequadas às peculiaridades de cada instalação.
- c) As instalações projetadas para pressões de operação superiores a 150 kpa (1,5 kgf/cm²).

O projeto, a instalação e a manutenção das instalações internas em objeto, são de exclusiva competência de profissionais qualificados.

1. Definições e simbologia

A seguir estão descritas as definições e as simbologias utilizadas no mercado de gás canalizado.

1.1 Unidades de medidas principais

Pressão

Os trechos de instalações internas são classificados em função das pressões disponíveis nos mesmos. A classificação nos trechos de instalação, por classe de pressão, é a seguinte:

Alta Pressão (AP): 400 kPa (4 kgf/cm²).

Média Pressão (MP): 5 kPa (0,05 kgf/cm²) 400kPa (4 kgf/cm²).

Baixa Pressão (BP): 5 kPa (0,05 kgf/cm²).

Para o trecho de baixa pressão, normalmente utiliza-se, como unidade de medida, o milímetro de coluna d'água (mmca). A equivalência entre essas unidades, referidas a 1 atmosfera, é a seguinte:

Atm	Kgf/cm²	mmca	bar	kPa
1	1,0333	10.333	1,01325	100

Energia

As unidades de energia, normalmente utilizadas, são as seguintes:

Megajoule (MJ)

Quilocaloria (kcal)

Termia (te)

Quilowatt hora (kWh)

A tabela a seguir mostra a equivalência entre as unidades de energia mais utilizadas.

	MJ	te	kcal	kWh
MJ	1	0,2389	238,9	0,2778
te	1	4,186	10 ³	1,163
kcal	4,186 x 10 ⁻³	10 ⁻³	1	1,163 x 10 ⁻³
kWh	3,6	0,86	860	1

Potência

As unidades de potência, normalmente utilizadas, são as seguintes:

Quilocaloria por hora (kcal/h)

Termia por hora (te/h)

Quilowatt (kW)

Atabela a seguir mostra a equivalência entre as unidades de potência mais utilizadas.

	kW	kcal/h	te/h
kW	1	860	0,86
kcal/h	1,163 x 10 ⁻³	1	10 ⁻³
te/h	1,163	10 ³	1

1.2 Termos e critérios básicos adotados

Abrigo de Medidores: construção destinada à proteção de um ou mais medidores, com os seus componentes.

Autoridade Competente: Órgão, repartição pública ou privada, pessoa jurídica ou física, investida de autoridade pela legislação vigente, para examinar, aprovar ou fiscalizar as instalações de gás, baseado em legislação específica local. Na ausência de legislação específica, a autoridade competente é a própria entidade pública ou privada que projeta e/ou executa a instalação interna de gás.

Defletor: É um dispositivo situado no circuito de exaustão dos produtos da combustão de um aparelho a gás, destinado a diminuir a influência da tiragem e do retrocesso sobre o funcionamento do queimador e da combustão.

Economia: É a propriedade servindo de habitação ou ocupação para qualquer finalidade, podendo ser utilizada independentemente das demais.

Fator de Simultaneidade (F): É a relação percentual entre a potência verificada na prática com que trabalha, simultaneamente, um grupo de aparelhos a gás, servidos por um determinado trecho de tubulação, e a soma da capacidade máxima de consumo desses mesmos aparelhos a gás.

Instalação Interna: Conjunto de tubulações, medidores, reguladores, registros, aparelhos de utilização de gás e seus acessórios, destinados à condução e ao uso do gás canalizado, no interior de uma edificação.

Instalação Predial: Conjunto de canalização, medidores, registros, coletores e aparelhos de utilização, com os necessários complementos, a partir da rede geral, destinado à condução e ao uso do gás combustível (Figura 7.1).

Medidor: Aparelho que permite medir o volume de gás consumido em um determinado período de tempo.

Número de WOBBE: É a relação entre o poder calorífero superior do gás, expresso em kcal/m³, e a raiz quadrada da sua densidade, em relação ao ar.

Prumada: É o trecho da instalação interna que abastece aos andares. Na prumada estão incluídos somente os trechos verticais, dos quais derivam as redes do andar.

Ramificação (Rede) Primária: Trecho da instalação interna que opera na pressão máxima de 150 kPa (1,5 kgf/cm²).

Ramificação (Rede) Secundária: Trecho da instalação interna que opera na pressão máxima de 5 kPa (0,05 kgf/cm²) até os pontos de utilização do gás.

Regulador de Primeiro Estágio: Dispositivo destinado a reduzir a pressão do gás, antes da entrada na rede primária, para no máximo 150 kPa (1,5 kgf/cm²).

Regulador de Segundo Estágio: Dispositivo destinado a reduzir a pressão do gás, antes da entrada na rede secundária, para um valor adequado ao funcionamento do aparelho a gás, abaixo de 5 kPa (0,05 kgf/cm²).

Válvula de Alívio: Dispositivo da instalação interna que permite reduzir a pressão interna da instalação, através da liberação direta do gás para o exterior, quando o gás atinge o valor de uma pressão pré-fixada.

Válvula de Bloqueio Automática ("Shut off"): Dispositivo instalado, com a finalidade de interromper o fluxo de gás, sempre que a sua pressão exceder o valor pré-ajustado. O desbloqueio (rearme), deve ser feito manualmente.

Válvula de Bloqueio Manual: Dispositivo instalado, com a finalidade de interromper o fluxo de gás, mediante o acionamento manual.

1.3 Simbologia adotada em projetos de instalações internas

A simbologia utilizada nas instalações internas é a seguinte:

Símbolo	Denominação	Símbolo	Denominação
Ø	Diâmetro da tubulação	AC	Tubulação em aço
IX	Tubulação em aço inoxidável	CU	Tubulação em cobre
PE	Tubulação em politileno (PEAD)	Ø 25 Ac	Tubulação aparente
Ø 25 Ac	Tubulação embutida	Ø 25 Ac	Tubulação enterrada
-00-	Tubulação em bainha		Conjunto de tubulação
Ø 25 Ac Ø 25 Cu	Transição de material	Ø <u>25 Ac</u> , Ø <u>50</u> Ac	Transição de diâmetro
Ø 2 <u>5 Ac, Ø50</u> Cu	Modificação de material e diâmetro	—× _{30°}	Cotovelo

Símbolo	Denominação	Símbolo	Denominação
4	Tê	+	Cruzeta
	Tampão	-	Luva
$\dashv \Vdash$	Raquete	$\overline{}$	Flange cego
+	Ponto de derivação, em curz, de tubulações		Ponto de derivação em "T" de uma tubulação
	Passagem de alvenaria		Junta de isolamento
44	Regulador de Pressão		Regulador de pressão com Shut-off de alta e baixa
	Regulador de pressão com Shut-off de baixa		Regulador de pressão com Shut-off de alta
	Regulador de pressão com Shut-off de alte e baixa e alívio incorporadas		Regulador de pressão com Shut-off de alta e alívio incorporadas
	Válvula de Shut-off de alta		Válvula de Shut-off de baixa
ķ ⊢	Válvula de alívio	- 	Válvula de esfera
	Válvula borboleta		Válvula manual
Ħ	Medidor de gás		Filtro
\sim	Tubo flexível com dispositivo de segurança	~~	Tubo flexível metálico
⊕	Exaustor		Duto de exaustão de produtos da combustão
•••••	Fogão de 6 bocas com forno	••••	Fogão 4 bocas com forno
	Forno convencional	•••••	Fogão de mesa sem forno
	Aquecedor de acumulação	9	Aquecedor de passagem
	Caldeira mista		Caldeira de calefação
	Manômetro		Estufa
	Limitador de vazão	Ģ	Outros equipamento a gás

2. Tipos de instalações internas residenciais e comerciais

2.1 Informações gerais.

Antes de iniciar a apresentação das instalações internas e comerciais, a seguir, estão mostradas algumas premissas básicas.

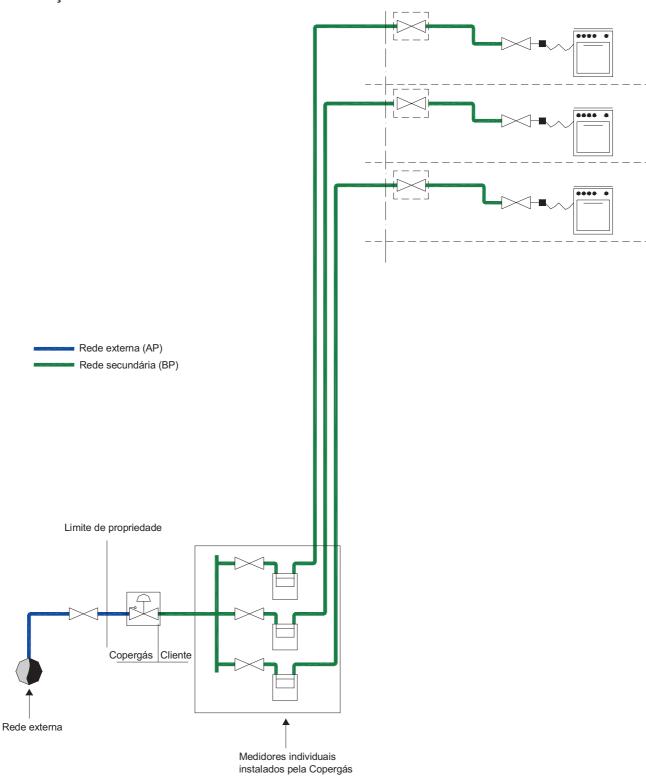
2.1.1 Pressões envolvidas:

De acordo com a NBR 14570 Instalações Internas para Uso Alternativo dos Gases GN e GLP, as pressões máximas de operação admitidas para a condução do gás nas redes de distribuição e nas instalações internas, são as seguintes:

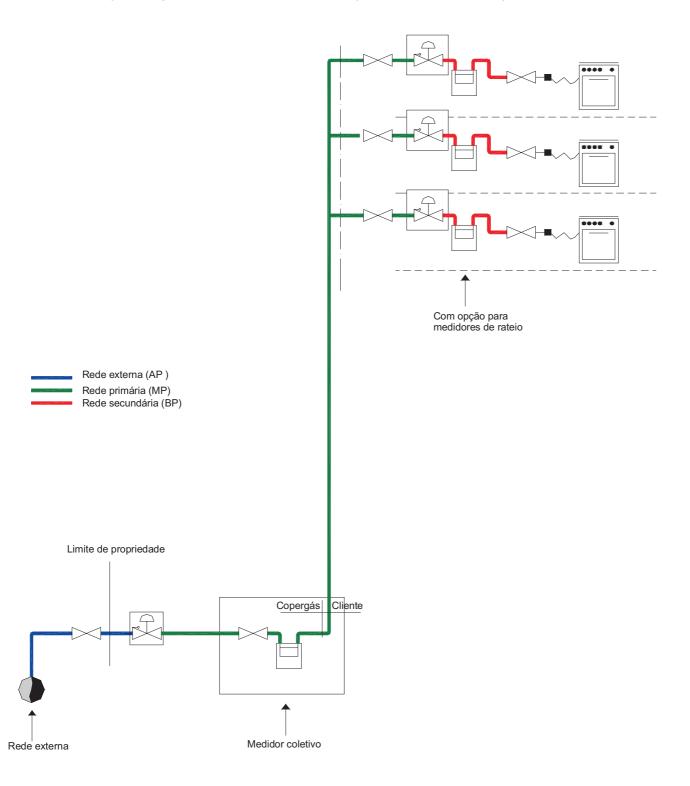
- a) Para a rede externa (AP): 4,0 kgf/cm².
- b) Para as redes primárias (MP): 150 kPa (1,5 kgf/cm²).
- c) Para as redes secundárias (BP): 5,0 kPa (0,05 kgf/cm²).

Com gás natural, a pressão de operação para fogões, fornos, fogareiros e aquecedores de água a gás, para todos os modelos domésticos, está estabelecida em 2 kPa (0,02 kgf/cm²) (BP).

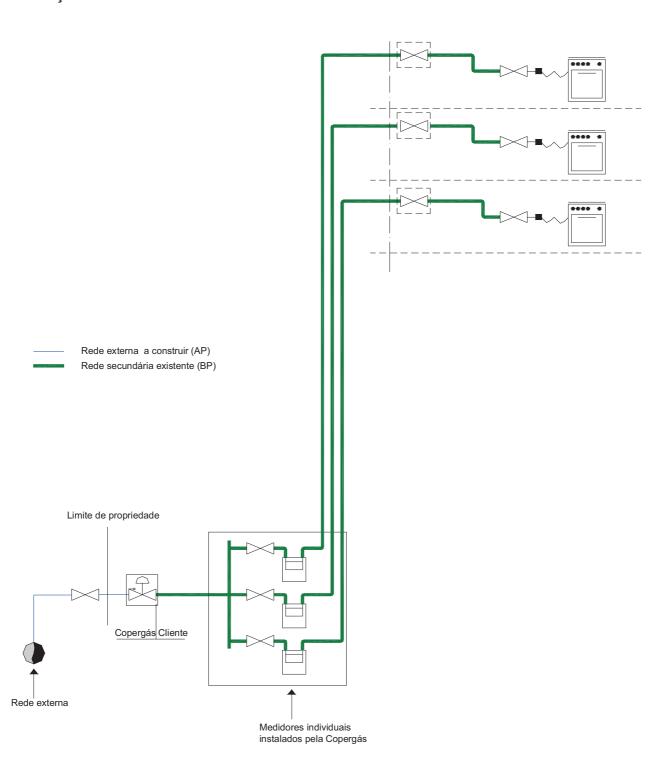
2.1.2 Vazões envolvidas:

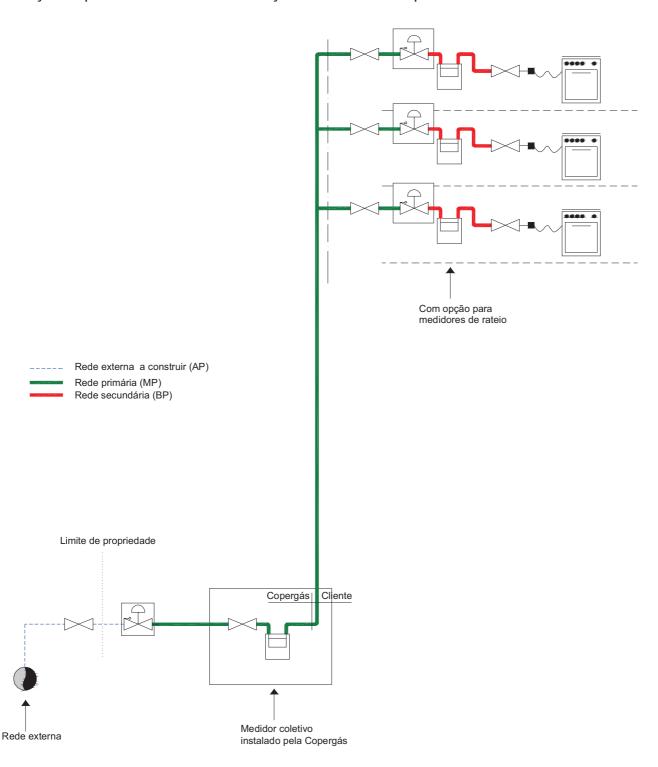

A vazão das instalações internas está relacionada diretamente com a potência dos aparelhos de utilização em cada uma de suas ramificações.

Para o cálculo da demanda de gás natural de uma instalação interna, utiliza-se o fator de simultaneidade. O projetista deve verificar as condições prováveis de consumo nos equipamentos e possíveis expansões de utilizações para decidir qual o valor do fator de simultaneidade (encontrado no Item 7, deste Manual e na NBR 14570). Uma sub-avaliação do fator de simultaneidade poderá resultar em deficiências no abastecimento de gás, durante os períodos de maior consumo, ao contrário, uma super-avaliação causará um encarecimento desnecessário das instalações internas.

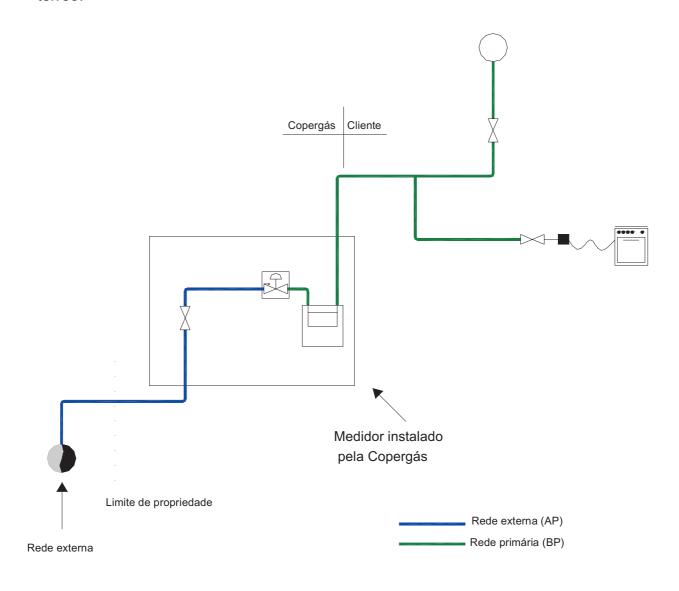

2.2 Prédios novos e já construídos sem instalação interna de gás canalizado.

<u>Instalação Tipo 1:</u> Edifício com redução de pressão secundária no térreo, prumadas e medições individuais.

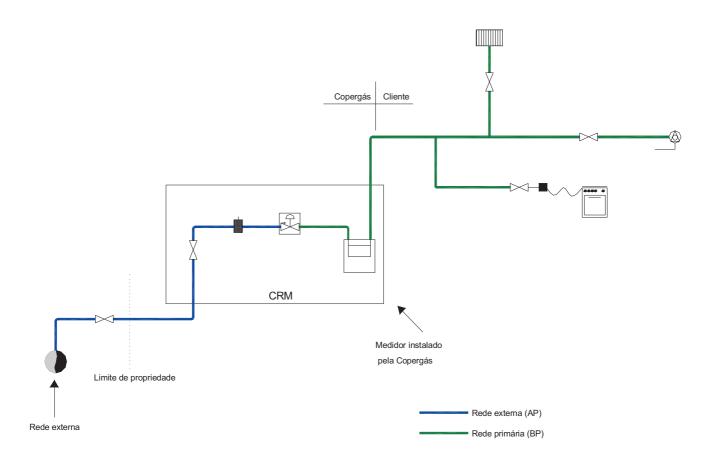

Instalação Tipo 2: Edifício com prumada única, redução de pressão primária no térreo, redução de pressão secundária e medições individuais nos pavimentos.


2.3 Prédios habitados com instalação interna de gás canalizado.

<u>Instalação Tipo 1:</u> Edifício com redução de pressão secundária no térreo, prumadas e medições individuais.


<u>Instalação Tipo 2:</u> Edifício com prumada única, redução de pressão primária no térreo, redução de pressão secundária e medições individuais nos pavimentos.

2.4 Instalações unifamiliar com prumada única.


<u>Instalação Tipo:</u> Edificação com prumada única, redução de pressão e medição no térreo.

2.5 Instalações comerciais

<u>Instalação Tipo:</u> Estabelecimento comercial, com prumada única, redução de pressão e medição no térreo.

3. Materiais e acessórios

3.1 Tubos e conexões

A seguir estão descritas as principais características das tubulações utilizadas nas instalações Internas.

3.1.1 Tubo e conexões de cobre rígidos

São utilizados tubos de cobre rígidos sem costura, com espessura mínima de parede de 0,8 mm. A Tabela a seguir, mostra os diâmetros dos tubos de cobre, conforme NBR 13206.

	TUBOS DE COBRE -NBR 13206			
Diâmetro		ESPESSURA		
Nom		Classe A	Classe I	
(pol.)	(mm)	(mm)	(mm)	
1/2	15		1	
3/4	22	0,9	4	
1	28	0,9	1,2	
1 1/4	35	1,1	1,4	
1 1/2	42	1,1	1,4	
2	54	1,2	1,5	
2 1/2	66	1,2	1,5	
3	79	1,5	1,9	
4	104	1,5	2	

TUBOS DE COBRE "DRYSEAL" - NBR 7541			
Diâmetro Nominal Espessura			
(pol.)	(mm)	(mm)	
1/2	12,7	0,79	
5/8	16	0,79	
3/4	19	0,79	

As conexões utilizadas em conjunto com os tubos de cobre devem estar de acordo com a NBR 11720. Os acoplamentos dos tubos são realizados utilizando-se conexões de cobre ou bronze, através de soldagem capilar ou brasagem capilar.

- **Soldagem capilar:** Este processo pode ser utilizado para acoplamento de tubulações embutidas ou aparentes. A composição metálica para o enchimento será Sn Pb 50 X 50, conforme a NBR 5883.
- **Brasagem capilar:** Este processo pode ser usado para o acoplamento de tubulações embutidas ou aparentes, onde o metal de enchimento deve ter o ponto de fusão mínimo de 450 °C.

3.1.2 Tubo e conexões de aço

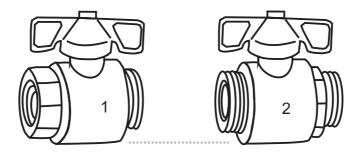
No que se refere a tubos e conexões de aço, podem ser utilizados:

- Tubos de condução de aço, com ou sem costura, preto ou galvanizado, no mínimo classe média, atendendo as especificações contidas na NBR 5580:
- Tubos de condução, com ou sem costura, preto ou galvanizado, no mínimo classe normal, atendendo as especificações contidas na NBR 5590;
- Conexões de ferro maleável, preto ou galvanizado, atendendo as especificações contidas nas NBRs 6943 ou 6925;
- Conexões de aço forjado, atendendo as especificações contidas na ANSIB 16.9.

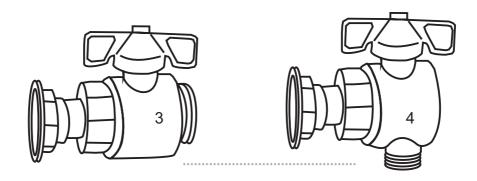
Na vedação das tubulações por roscas e utilizadas em baixa pressão, devem ser utilizados vedantes pastosos ou fita pentatetrafluoretileno (tipo teflon). É proibido o uso de vedantes tipo zarcão ou à base de tintas ou fibras vegetais.

3.2 Dispositivos de bloqueio

As válvulas de bloqueio localizadas à montante dos medidores e que forem utilizadas nas instalações internas, deverão possuir dispositivos que possibilitem a colocação de lacres, na posição fechada, bloqueando a passagem do gás.

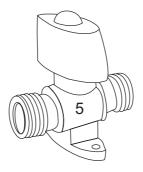

As válvulas posicionadas nas instalações secundárias devem suportar a pressão máxima de operação de 150 kPa (1,53 kgf/cm²). Para as instalações primárias, esta pressão deverá ser de 1.000 kPa (10,2 kgf/cm²).

É recomendado a utilização de válvulas de bloqueio do tipo esfera, em aço inox, quando localizadas em trechos da instalação interna, operadas em média ou alta pressão.


As válvulas de bloqueio, de acionamento manual, mais utilizadas em instalações internas são as seguintes:

- 1. Válvula fêmea-macho, com conexões rosca gás fêmea e sobreposta.
- 2. Válvula macho-macho, com conexões por sobreposta.

Estes tipos de válvulas são utilizadas basicamente como válvula de edifício, de prumada coletiva, de consumidor, da economia ou como válvulas intermediárias da instalação. São utilizadas, também, como registro de aparelho.


- 3. Válvula de medidor reta macho-fêmea, com conexões por sobreposta.
- 4. Válvula de medidor angular macho-fêmea, com conexões por sobreposta.

Estes tipos de válvulas são utilizados, exclusivamente, para conexões de medidores e devem possuir dispositivos que permitam a colocação de lacre, na posição fechada, para permitir o bloqueio da passagem do gás.

5. Válvula macho-macho com suporte de fixação e conexões por sobreposta

Este tipo de válvula será utilizado normalmente como registro de aparelho, ou seja, no extremo da instalação interna.

3.3 Medidores

Os medidores de gás são equipamentos que registram o volume do gás consumido. Para a medição de volumes de gás em instalações individuais servindo a locais destinados ao uso doméstico, coletivo ou comercial, poderão ser utilizados medidores do tipo volumétrico (de deslocamento positivo). Quando houver consumo de gás, o mecanismo de medição dos medidores do tipo volumétrico, desloca-se de forma cíclica, medindo um volume constante de gás, registrando o mesmo em seu totalizador.

medidores do tipo volumétrico (de deslocamento positivo). Quando houver consumo de gás, o mecanismo de medição dos medidores do tipo volumétrico, desloca-se de forma cíclica, medindo um volume constante de gás, registrando o mesmo em seu totalizador.

São medidores do tipo volumétrico os de diafragmas, também conhecidos como de paredes deformáveis, e os de pistões rotativos. Os de diafragmas são os mais utilizados nos consumidores residencial e comercial.

A COPERGÁS, ao projetar uma instalação interna, definirá o tipo do medidor mais adequado a ser utilizado, em função das vazões máximas e mínimas previstas como também, das características de funcionamento dos aparelhos a gás que serão utilizados.

A seguir, estão mostradas as principais características de funcionamento dos medidores do tipo volumétrico.

Medidores de Diafragmas

Esses tipos de medidores, mais utilizados para a medição de gás natural, nos segmentos residencial e comercial, possuem uma ampla faixa de medição, contemplando uma rangeabilidade de, normalmente 1:100, e uma perda de carga reduzida, o que permitem seu emprego nas instalações internas de baixa pressão.

A tabela a seguir, mostra as dimensões e as características mais relevantes dos medidores de diafragmas.

CARACTER	CARACTERÍSTICAS DOS MEDIDORES DE DIAFRAGMAS					
Classe do	Distância Entre	Vazão	Vazão			
Medidor	Eixxos	Máxima	Mínima			
	(mm)	(m3/h)	(m3/h)			
G-1.0	100	1,6	0,016			
G-1.6	100	2,5	0,016			
G-2.5	150	4	0,025			
G-4	150	6	0,04			
G-6	150	10	0,06			
G-10	(1)	16	0,4			
G-16	(1)	25	0,16			
G-25	(1)	40	0,25			
G-40	(1)	65	0,4			
G-65	(1)	100	0,65			
G-100	(1)	160	1			
G-160	(1)	250	1,6			
Nota (1): Distânci	as não estabelecidas em n	orma.				

Medidores de Pistões Rotativos

Na tabela a seguir, são mostradas as vazões máximas e mínimas, correspondentes aos medidores do Tipo Rotativo.

CARACTERÍSTICAS DOS MEDIDORES ROTATIVOS				
Classe do	Vazão Máxima	Vazão Mínima		
Medidor	(m3/h)	(m3/h)		
G-16	25	1,3		
G-25	40	2		
G-40	65	3		
G-65	100	5		
G-100	160	8		
G-160	250	10		
G-250	400	20		
G-400	650	32		
G-650	1.000	50		
G-1000	1.600	80		

3.4 Elementos de regulagem e segurança

Os reguladores de pressão de primeiro estágio devem ter a descarga dos dispositivos de alívio de pressão em um ponto afastado, com uma distância mínima de três metros da fachada do edifício e em local amplamente ventilado.

Os reguladores de pressão de segundo estágio devem ser dimensionados para atender a pressão adotada prevista para os aparelhos de utilização de gás, por eles servidos. Esses reguladores devem ser equipados ou complementados com, pelo menos, dois dispositivos de segurança, a seguir mostrados.

• Válvula de Bloqueio Automático (Válvula "Shutt-off"): Está válvula tem como objetivo o bloqueio automático da passagem do gás, com fechamento rápido por motivo de sobrepressão e deve possuir dispositivo para rearme manual, independente ou incorporado ao próprio corpo do regulador.

• Válvula de Alívio: Essa válvula é utilizada para, em um caso de sobrepressão, não suficiente para o bloqueio através da válvula de bloqueio automático, conduzir o excedente de gás para o ambiente externo. Para a instalação de regulador que disponha desta válvula, é fundamental que, as condições de ventilação do local de instalação sejam adequadas ou, ainda, o abrigo em que elas estejam instaladas seja equipado com tubo de ventilação que conduzam o gás excedente para o exterior da edificação.

A tabela, a seguir, mostra as pressões de ajuste das válvulas de alívio e "shutt-off".

PRESSÃO NOMINAL		AJUSTE	DAS VÁLVULAS DE
DE SAÍDA		ALÍVIAO E "SHUTT-OFF"	
		(% da pressão nominal de saída)	
(mmca)	(kPaa)	Alívio	"Shutt-off"
P <= 500	P <= 5	170	200
500 <p<= 3.500<="" td=""><td>5 < P <= 35</td><td>140</td><td>170</td></p<=>	5 < P <= 35	140	170
P > 3.500	P > 35	125	140

3.5 Acessórios

A seguir estão descritos alguns dos principais acessórios, utilizados nas instalações internas de gás canalizado.

3.5.1 Tubos flexíveis metálicos (Mangueiras)

A conexão flexível é formada por um tubo de metal espiralado (espirometálico) ou de aço inoxidável corrugado, provido de um revestimento, que lhe proporciona grande flexibilidade e com interligações roscadas em suas extremidades.

Um extremo da conexão flexível se liga diretamente ao aparelho de gás e a outra pode ser ligada diretamente ou não à válvula de conexão do aparelho. Caso não seja ligada diretamente à válvula do aparelho, o trecho de condução, compreendido entre ela e a interligação roscada do tubo flexível, deverá ser de conexão rígida.

Os tubos flexíveis metálicos devem ser utilizados, conforme NBR 14177.

3.5.2 Flanges

Quando utilizado em tubos de aço carbono, os flanges devem ser de aço forjado A-105, classe 150, face com ressalto, ranhuras concêntricas, conforme especificação ANSI/ASME B 16.5.

3.5.3 Elementos de fixação das tubulações

As tubulações aparentes deverão ser fixadas adequadamente às paredes ou tetos, através de elementos de fixação do tipo abraçadeira ou suportes-guia.

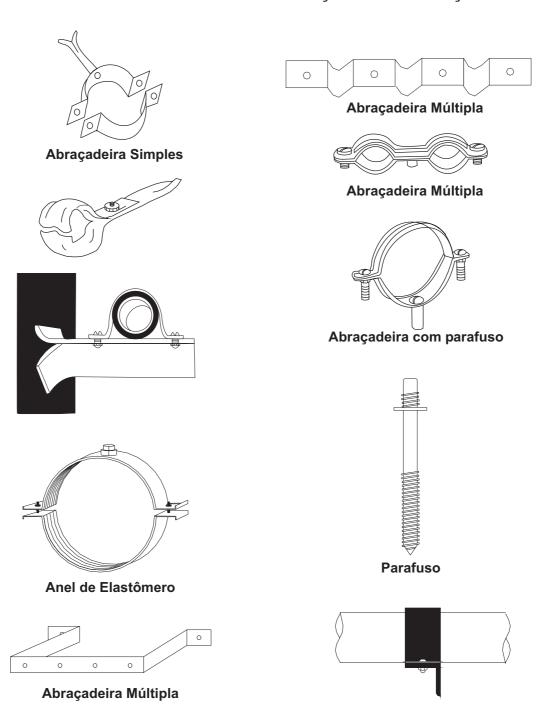
Estes elementos de fixação poderão ser, de acordo com a tipologia da instalação, simples ou múltiplos, ou seja, fixam ou suportam vários tubos, simultaneamente, (feixes de tubos provenientes do agrupamento de medidores) ou somente um único tubo.

A seguir estão descritos alguns procedimentos para a fixação das abraçadeiras e dos suportes-guia.

A ancoragem da abraçadeira poderá ser realizada diretamente na parede, por chumbador ou através de parafusos com buchas de fixação. A ancoragem dos suportes-guia será realizada através do chumbamento na parede ou no teto.

A fixação da abraçadeira na tubulação não poderá ser feita manualmente ou por pressão e sim através de ferramenta adequada que permita a montagem e desmontagem.

O desenho da abraçadeira deverá ser feito de forma que, em nenhum caso, haja contato da tubulação com a parede, teto ou suporte. No caso de abraçadeiras múltiplas, o desenho deverá garantir que não haja contato entre as tubulações.


Serão construídas com materiais de resistência comprovada (aço, aço galvanizado, cobre, latão, etc.), devidamente protegidos contra a corrosão e não poderão estar em contato direto com a tubulação, sendo isoladas da mesma, através de revestimento, de preferência anel de elastômero ou material plástico, ou então revestindo a tubulação, convenientemente, na região de contato.

Quando o tubo for de aço inoxidável, o elemento de fixação não poderá ser do tipo ferrítico.

A Figura 3.1, a seguir, mostra alguns elementos de fixação de tubulações.

FIGURA 3.1: ELEMENTOS DE FIXAÇÃO DE TUBULAÇÕES

3.5.4 Tomadas de pressão

O tipo de tomada de pressão que será utilizado nos diferentes trechos da instalação interna dependerá da pressão do trecho considerado ser igual ou inferior a 150 mbar.

• Tomadas de pressão para P 150 mbar (1.500 mmca). As tomadas de pressão para valores iguais ou inferiores a 150 mbar são constituídas por um dispositivo de corpo cilíndrico, provido de um pequeno orifício permitindo contato com o gás e um obturador cônico roscado, realizando a vedação por compressão de metal contra metal entre o orifício e obturador, ao se rosquear este sobre o corpo do dispositivo.

Este obturador cônico possui um orifício longitudinal para conduzir o gás, que quando afrouxado com uma chave apropriada, permite obter a leitura da pressão, quando acoplado a um manômetro.

Este tipo de tomada de pressão permite que se acople a ela um tubo flexível de elastômetro ou de material plástico, que serve para conectar um manômetro de coluna d'água, um registrador de pressão, etc.

Existem dois tipos de tomadas de pressão para valores inferiores a 150 mbar: a soldada e a roscada, sendo chamadas de "tomadas de pequeno calibre".

• Tomadas de pressão para P > 150 mbar (1.500 mmca). As tomadas de pressão para valores maiores que 150 mbar e até 4 bar, conhecidas como tomadas Peterson, são constituídas por um corpo cilíndrico, com rosca gás macho 1/4", que contém uma membrana de elastômero e um tampão de fechamento roscado (rosca de 1/8", cilíndrica).

Neste tipo de tomada de pressão, é conectado um acessório especial, provido de uma agulha perfurada, que se crava no elastômero, atravessando toda a sua espessura e permitindo obter a leitura de pressão. Este acessório é rosqueado na tomada, no lugar do tampão de fechamento, e se conecta a um dispositivo de medição de pressão

adequado (manômetro, registrador de pressão, etc.) Ao retirar o acessório, deve-se recolocar o tampão de fechamento.

Para instalar as tomadas Peterson sobre tubos de aço, deverá ser soldada previamente, no ponto da instalação interna desejado, uma derivação com saída para rosca fêmea de 1/4", perfurando o tubo, antes de roscá-la.

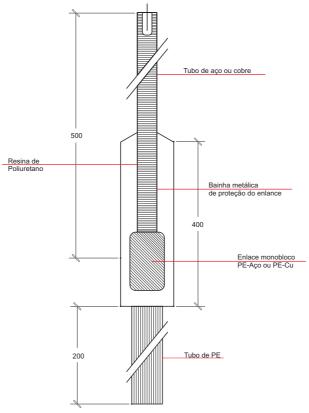
Para instalar as tomadas Peterson sobre tubos de cobre ou aço inoxidável, deverá ser intercalado, no ponto da instalação interna desejado, o acessório adequado para efetuar a conexão.

3.6 Juntas de transição

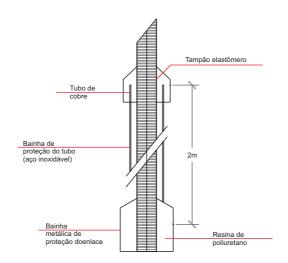
Chama-se junta de transição (aço x PE), a parte da instalação que proporciona a transição entre o trecho enterrado de polietileno (PE) e o aparente, de aço ou instalados em alvenaria.

As juntas, que são utilizadas nas instalações internas, são constituídas por materiais distintos, unidos por uma interligação fixa ou monobloco, sendo o lado em polietileno o lado da parte enterrada e de aço o lado da parte aparente, ou instalados em alvenaria.

A interligação monobloco de polietileno-aço ou polietileno-cobre deverá estar protegida por uma bainha metálica, preenchida com resina de poliuretano, que serve como proteção contra a umidade.


As juntas de transição polietileno-cobre, com saída do tubo para o exterior, utilizadas em instalações aparentes, incorporam uma bainha de aço inoxidável na parte externa até uma altura de 2 metros, fechada com um tampão de elastômero para evitar a entrada de água, servindo para dar proteção mecânica ao tubo de cobre.

As juntas deverão ser de modelo aprovado pela COPERGÁS e possuir um selo de conformidade.



A COPERGÁS orientará sobre as características e dimensões das juntas de transição que deverão ser utilizadas, podendo dar referências de Fornecedores que cumpram a norma aplicável, assegurando um projeto adequado e com qualidade.

A Figura a seguir mostra esquema de bainha de proteção de aço inoxidável para juntas de transição normalizadas de polietileno-cobre.

Junta de transição polietileno-aço ou polietilenocobre (neste caso, haverá necessariamente uma bainha de aço inoxidável).

Nas tabelas seguintes, são apresentados as dimensões das juntas de transição polietileno-aço e polietileno-cobre, normalmente utilizadas em instalações internas.

Dimensões das juntas de Polietileno - Aço								
Diâmetro Nominal	Diâmetro do tubo de		o do tubo aço					
(mm)	Polietileno SDR - 11 (mm)	(mm)	(pol.)					
25	32	33,7	1"					
32	40	42,4	1 1/4"					
50	63	60,3	2"					
80	90	88,9	3"					

Dimensões das juntas de Polietileno - Cobre									
			Diâmetro	da Bainha					
	Diâmetro do tubo de	Diâmetro do tubo de	do Tubo						
			de proteção (aço						
Diâmetro Nominal	Polietileno SDR	cobre	inoxidável)						
(mm)	11 (mm)	(mm)	(mm)	(pol.)					
25	32	22 \(20 x 22)	33,7	1"					
32	40	42 (40 x 42)	42,4	1 1/4"					
50	63	54 (51 x 54)	60,3	2"					

3.7 Especificação de materiais e acessórios para instalações internas para gás natural

A seguir estão apresentadas tabelas, com especificações de material de tubulação para instalações internas para gás natural.

ESPECIFICAÇÃO DE MATERIAL DE TUBULAÇÃO PARA INSTALAÇÕES PREDIAIS DE GÁS NATURAL

Pressão de Operação: até 4 kgf/cm²

Material da Tubulação: Aço Classe: 150 RF

Limite de Temperatura: -15° a 100°C Corrosão: Nula

		DIÂMETRO CLASSE				
	MATERIAL	DE	ATÉ	OU ESPESSURA	EXT	DISCRIMINAÇÃO
TUBO	AÇO CARBONO	1/2"	1/2"	Sch 80	PL	AC API 5L Gr. A ou B SC ou
]]	,	2"	6"	Sch 40	РС	CC, ANSI B 36.10, ASTM A106 Gr. A ou B
ULA	AÇO	1/2"	1/2"	800 lbs	RO	VES de AFO ASTM A105, interno ASTM A-351 CF8, PTFE
VÁLVULA	AÇU	2"	4"	150	FLG	VES de AFU ASTM A216 Gr. WCB, esfera ASTM A 182 Gr. F6a, PTFE, API6D
ÕES		1/2"	1/2"	3.000	RO	AFO, ASTM A-105, ANSI B 16.11
CONEXÕES	AÇO CARBONO	2"	6"	Sch 40	РС	AC ASTM A-234 Gr. WPB, ANSI B 16.9
FLANGES	AÇO CARBONO	2"	6"	150	PE	AFO, ASTM A-105, ANSI B 16.5
UNIÕES	AÇO CARBONO	1/2"	1/2"	3.000	RO	AFO, ASTM A-105, sede integral, assento em bronze, ISO 7-1
ÇÃO		1/2"	1/2"	FITA		Fita de Politetrafluoretileno (Teflon)
VEDAÇÃO		2"	6"	JUNTA	1/16"	Papelão hidráulico, com borracha NBR 11734,ANSI B 16.21
PARAFUSO	AÇO CARBONO					Tipo estojo, ASTM A-193 Gr. B7, porcas ASTM A-194 CL-2H, HEX, Série Pesada, dimensões ANSI B 16.5

Legenda: PL - Ponta Lisa

PC - Ponta Chanfrada

ES - Encaixe Solda

CC - Com Costura

FLG - Flange PE - Pescoço SC - Sem Costura AFU-Aço Fundido

AFO - Aço Forjado HEX - Hexagonal RO - Rosca (NPT ou BSP) VES - Válvula Esfera

Para ambas classes

ESPECIFICAÇÃO DE MATERIAL DE TUBULAÇÃO PARA INSTALAÇÕES PREDIAIS DE GÁS NATURAL

Pressão de Operação: de 0,05 kgf/cm² a 1,5 kgf/cm²

Material da Tubulação: Cobre Classe: A ou I

Corrosão: Nula

		DIÂMETRO		CLASSE		
	MATERIAL	DE	ATÉ	OU ESPESSURA	EXT	DISCRIMINAÇÃO
TUBO	COBRE	15mm	15mm	Classe I	PL	ASTM C 12200
		22mm	22mm	Classe A		
'ULA	AÇO	1/2"	1 1/2"	800 lbs	RO	VES de AFO ASTM A105, interno ASTM A-351 CF8, PTFE
VÁLVULA	AÇO	2"	4"	150	FLG	VES DE AFU ASTM A216 Gr. WCB interno ASTM A 182 Gr. F6a, PTFE API6D
CONEXÕES	BRONZE/LATÃO	1/2"	1 1/2"		RO	Bronze/Latão
CONE	COBRE	15mm	104mm		ES	Cobre
UNIÕES	BRONZE	1/2"	1"		ES	Bronze
Š	COBRE	15mm	104mm		LS	Cobre/Bronze
VEDAÇÃO	COBRE	1/2"	2"	FITA		Fita de Politetrafluoretileno (Teflon)

Legenda: PL - Ponta Lisa FLG - Flange VES - Válvula Esfera

AFU-Aço Fundido

RO - Rosca (NPT ou BSP) ES - Encaixe Solda AFO - Aço Forjado

ESPECIFICAÇÃO DE MATERIAL DE TUBULAÇÃO PARA INSTALAÇÕES PREDIAIS DE GÁS NATURAL

Pressão de Operação: de 0,05 kgf/cm² a 1,5 kgf/cm²

Material da Tubulação: Aço Classe: 150 RF

Limite de Temperatura: -15° a 100°C Corrosão: Nula

		DIÂM	ETRO	1		
	MATERIAL	DE	ATÉ	OU ESPESSURA	EXT	DISCRIMINAÇÃO
TUBO	AÇO CARBONO	1/2"	1 1/2"	Sch 80	PL	AC API 5L Gr. A ou B SC ou
1	3 · · · · ·	2"	6"	Sch 40	РС	CC, ANSI B 36.10, ASTM A106 Gr. A ou B
ULA	400	1/2"	1 1/2"	800 lbs	RO	VES de AFO ASTM A105, interno ASTM A-351 CF8, PTFE
VÁLVULA	AÇO	2"	4"	150	FLG	VES de AFU ASTM A216 Gr. WCB, esfera ASTM A 182 Gr. F6a, PTFE, API6D
CONEXÕES	AÇO CARBONO	1/2"	1 1/2"	3.000	RO	ASTM A-105, ANSI B 16.11
CON		2"	6"	Sch 40	РС	A-234 Gr. WPB, ANSI B 16.9
		1/2"	1 1/2"		RO	
FLANGES	AÇO CARBONO	2"	6"	150	PC	ASTM A-105, ANSI B 16.5, RF
UNIÕES	AÇO CARBONO	1/2"	1 1/2"	3.000	RO	ASTM A-105, sede integral, ANSI B 16.11
ÇÃO		1/2"	1 1/2"	FITA		Fita de Politetrafluoretileno (Teflon)
VEDAÇÃO		2"	6"	JUNTA	1/16"	Papelão hidráulico, com borracha NBR 11734, ANSI B 16.21

Legenda: PL - Ponta Lisa

PC - Ponta Chanfrada ES - Encaixe Solda

CC - Com Costura AFO - Aço Forjado

RO - Rosca (NPT ou BSP)

FLG - Flange

SC - Sem Costura HEX - Hexagonal AFU-Aço Fundido

Para ambas classes

ESPECIFICAÇÃO DE MATERIAL DE TUBULAÇÃO PARA INSTALAÇÕES PREDIAIS DE GÁS NATURAL

Pressão de Operação: Rede secundária de até 0,05 kgf/cm²

Material da Tubulação: Cobre Classe: A ou I

Corrosão: Nula

		DIÂMETRO		CLASSE		~ -
	MATERIAL	DE	ATÉ	OU ESPESSURA	EXT	DISCRIMINAÇÃO
TUBO	COBRE	15mm	15mm	Classe I	PL	ASTM C 12200
⊥		22mm	22mm	Classe A		Idem
VÁLVULA	AÇO	1/2"	2"		RO	VES latão forjado, esfera em latão, passagem plena
CONEXÕES	BRONZE/LATÃO	1/2"	1 1/2"		RO	Bronze/Latão
CONE	COBRE	15mm	104mm		ES	Cobre
UNIÕES	BRONZE	1/2"	1"		ES	Cobre/Bronze
N N	COBRE	15mm	104mm			00010/0101120
VEDAÇÃO	COBRE	1/2"	2"	FITA		Fita de Politetrafluoretileno (Teflon)

Legenda: PL - Ponta Lisa

RO - Rosca (NPT ou BSP)

ES - Encaixe Solda

VES - Válvula Esfera

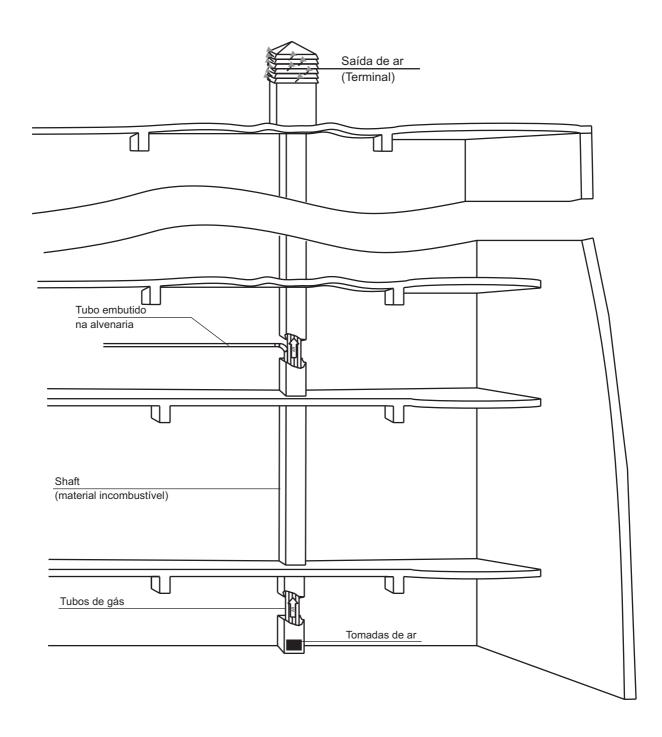
4. Aspectos construtivos

4.1 Generalidades

A seguir estão descritas algumas generalidades importantes, no que se refere à construção das instalações internas para utilização do gás natural.

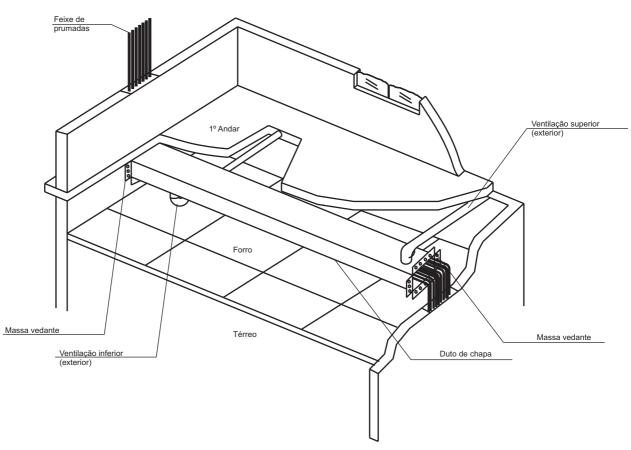
- 4.1.1 As tubulações depois de instaladas devem ser completamente estanques e estarem desobstruídas.
- 4.1.2 A instalação interna de gás deve ser provida de válvulas de fechamento manual em cada ponto que se tornar conveniente para a segurança, operação e manutenção da mesma.
- 4.1.3 A tubulação não pode ser considerada como elemento estrutural e nem ser assentada internamente a ele.
- 4.1.4 A instalação interna de gás para cozinha/copa, de edifícios de escritórios, deve ser executada somente quando esta provir de ventilação permanente, conforme a NBR 13103.
- 4.1.5 As tubulações não podem passar em espaços confinados, que possibilitem o acúmulo de gás em caso de vazamento, tais como:
 - Dutos de ar confinado, água pluvial, esgoto e chaminé;
 - Reservatório de água;
 - Compartimentos destinados a dormitórios;
 - Poços de elevadores;
 - Incineradores:
 - Dutos de lixo;
 - Compartimentos de equipamentos elétricos;
 - Forros e espaços confinados;
 - Rebaixamento de tetos.

Nota: A Figura 4.1, mostrada a seguir mostra um arranjo muito utilizado de passagem de tubulações de gás.


- 4.1.6 Nos casos em que a condição descrita no Item 4.1.5 for inevitável, as tubulações devem estar envolvidas por dutos ou tubo-luva, conforme mostrado na Figura 4.2, os quais devem:
 - Ter no mínimo, 2 aberturas situadas nas suas extremidades, sendo que as duas devem ter saída da projeção horizontal da edificação;
 - Nos casos em que a extremidade inferior não for possível estar fora da projeção horizontal, pode estar localizada em um ambiente provido de ventilação permanente;
 - Apresentar distanciamento mínimo de 25 mm (1"), entre a tubulação e a sua parede interna;
 - Ter resistência mecânica adequada a possíveis esforços decorrentes das condições de uso;
 - Estar convenientemente protegidos contra a corrosão;
 - Não apresentar vazamentos em toda a sua extensão; e
 - Devem ser executados de material incombustível e resistente à água.

Nota: Recomenda-se o uso mínimo de conexões nas tubulação localizadas no interior do tubo-luva.

4.1.7 Todos os pontos da instalação interna que não se encontrarem em serviço, devem ser plugados.



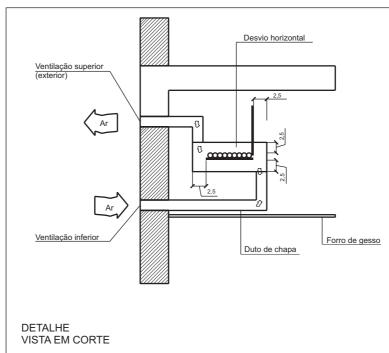
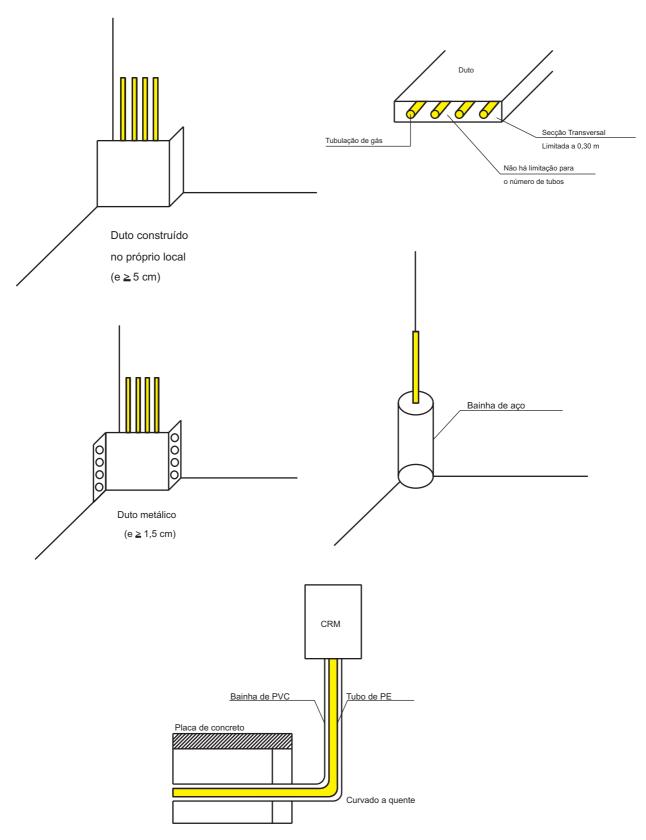

FIGURA 4.1: "SHAFT" PARA TUBULAÇÕES DE GÁS

FIGURA 4.2: DETALHES DO TUBO LUVA


4.2 Proteção

A seguir estão descritos alguns aspectos importantes, no que se refere à proteção das instalações internas.

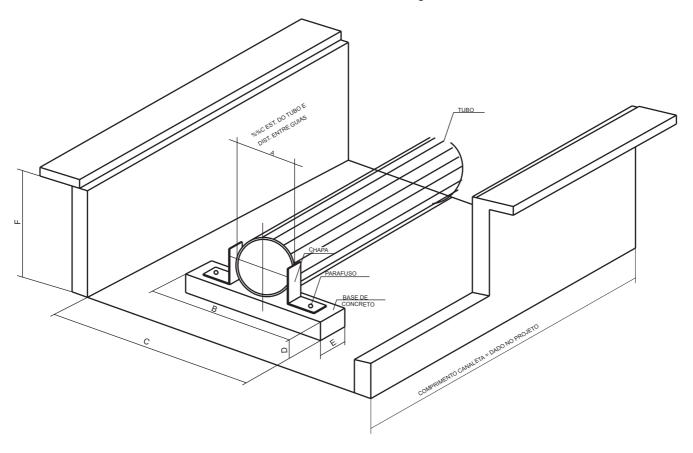
- 4.2.1 Em locais que possam ocorrer choques mecânicos, as tubulações, quando aparentes, devem possuir proteção contra os mesmos. A Figura 4.3 mostra alguns exemplos dessa proteção.
- 4.2.2 As válvulas e os reguladores de pressão devem ser instalados de modo a permanecerem protegidos contra danos físicos, permitirem fácil acesso, conservação e substituição a qualquer tempo.
- 4.2.3 Na travessia de elementos estruturais, deve ser utilizado um tubo-luva ou bainha.
- 4.2.4 É proibido a utilização da tubulação de gás para aterramento de equipamentos elétricos e para-raios.
- 4.2.5 Quando necessário, a tubulação deve ser aterrada de acordo com a especificação da NBR 5419.
- 4.2.6 Quando o cruzamento de tubulações de gás com condutores elétricos for inevitável, deve-se colocar entre eles um material isolante elétrico.

FIGURA 4.3: TIPOS DE PROTEÇÃO MECÂNICA

4.3 Localização

As tubulações de gás aparentes devem:

- 4.3.1 Apresentar distâncias mínimas de 0,30 metros entre elas e os condutores eletricidade, se o condutor for protegido por conduite, caso contrário, essa distância deverá ser de 0,50 metros.
- 4.3.2 Ter um afastamento das demais tubulações, o suficiente para proporcionar acesso a elas, por ocasião de necessidade de manutenção nas mesmas.
- 4.3.3 Em caso de superposição de tubulações, a tubulação de gás deve ficar acima das demais.


4.4 Instalação interna/ramal interno

A seguir, estão apresentados alguns conceitos necessários para a implantação de instalações internas e ramais internos.

- 4.4.1 As tubulações internas, quando enterradas, devem ser instaladas a uma profundidade mínima de 0,60 metros, com o objetivo de evitar a transmissão dos esforços decorrentes das cargas, às tubulações.
- 4.4.2 Quando as tubulações forem instaladas diretamente no solo, o fundo da vala deve estar plano e o reaterro deve ser feito, de modo a não prejudicar o revestimento da tubulação.
- 4.4.3 As canaletas utilizadas para confinar tubulações internas de gás devem ser destinadas exclusivamente para este fim, bem como:
 - a) Apresentar dimensões compatíveis, conforme é mostrado na Figura 4.4.
 - b) Devem ter ventilação apropriada, para evitar o possível acúmulo de gás no seu interior e se utilizada na projeção da edificação, deve ser ventilada para o exterior da mesma.
 - c) Ter caimento longitudinal e transversal mínimo de 0,5% e dreno para o escoamento.
 - d) Ter a espessura das paredes e do tampo, de modo a suportar o tráfego local.

FIGURA 4.4: CANALETA PARA TUBULAÇÃO SUBTERRÂNEA

CANALETA DE CONCRETO (DIMENSÕES MÍNIMAS) (mm)

ØTU B POL	Α	В	С	D	E	F
2	60,5	90	190	20	25	140
3	89,0	120	220	20	25	200
4	115,0	145	245	25	30	250
6	168,5	200	300	30	35	360
8	220,0	250	350	40	50	480
10	273,0	310	420	50	70	590

- 4.4.10s suportes para as tubulações devem estar localizados:
 - a) De preferência nos trechos retos das tubulações, evitando-se, sempre que possível, as curvas, reduções e derivações.
 - b) Próximos às cargas concentradas, como por exemplo, válvulas, medidores, etc.
 - c) De modo a evitar contato direto com as tubulações, para minimizar uma possível corrosão localizada.
- 4.4.2 Na construção dos ramais internos, deve ser obedecido o seguinte:
 - a) Todo o ramal externo, residencial e comercial, deve ser construído pela COPERGÁS, até o interior do abrigo do regulador de 1º estágio, não importando qual seja a pressão de distribuição da rede.
 - b) O consumidor deve instalar um tubo-luva sob o piso e na divisa da propriedade, conectando o abrigo do medidor/regulador ao local onde está instalada a válvula de bloqueio, no passeio.
 - c) O consumidor deve deixar uma abertura de aproximadamente 40 cm X 40 cm X 40 cm de profundidade no interior da área do prédio, em uma das extremidades do tubo-luva, tomando cuidado para que este não se obstrua. Na outra extremidade do tubo-luva, que fica no passeio, convém que seja marcada com tinta a sua posição na calçada.
 - d) Os pontos de utilização de gás, destinados à ligação dos aparelhos a gás, devem possibilitar a instalação de válvulas e outras conexões necessárias à ligação.

4.5 Revestimento

Alguns cuidados que deve se ter coma as tubulações de gás, estão descritos a seguir.

- 4.5.1 Deve-se efetuar uma análise cuidadosa a respeito da possibilidade de ocorrer corrosão nos elementos da tubulação. Caso se verifique a possibilidade de sua ocorrência, deve-se providenciar a proteção necessária.
- 4.5.2 As tubulações em aço enterradas devem ser revestidas a frio, com produtos de base asfáltica, epóxi ou fita de polietileno, com a finalidade de evitar-se corrosão.
- 4.5.3 Tubulações aparentes ou instaladas em canaletas, construídas com

tubos de aço não galvanizados, serão revestidas por produtos a base de antióxido, a frio ou pintura anticorrosiva, com tinta industrial adequada para esta finalidade.

- 4.5.4 A tubulação de gás combustível aparente deve receber uma pintura de acabamento na **cor amarela**, de acordo com a NBR 6493. Em caso de tubulação na fachada desde que não tenha interferência de outras instalações pintar o tubo na cor predominante da fachada.
- 4.5.5 O revestimento das tubulações de aço, que foi comprometido durante a instalação, deve ser refeito convenientemente.
- 4.5.6 As tubulações que afloram do piso ou parede, no local da medição do gás, devem manter a proteção anticorrosiva até 5 cm, acima do ponto de afloramento, para evitar-se a corrosão do tipo aeração diferencial.

4.6 Teste de estanqueidade

A seguir estão descritos os principais itens do procedimento que deve ser executado durante a execução do teste de estanqueidade de instalações internas.

- 4.6.1 Toda a instalação interna, antes de ser abastecida com gás combustível, ou quando alvo de conversão para a utilização de outro tipo de gás combustível deve ser obrigatoriamente submetida a teste de estanqueidade.
- 4.6.2 Para as tubulações embutidas e subterrâneas, os testes de obstrução e estanqueidade devem ser realizados antes do revestimento das paredes ou recobrimento das valas.
- 4.6.3 O teste de estanqueidade deve ser realizado com ar ou gás inerte, sendo proibido o emprego de água ou qualquer outro líquido.
- 4.6.4 Para a execução do teste de estanqueidade, as válvulas instaladas em todos os pontos extremos devem ser fechadas e ter a extremidade não conectada a instalação, livre e em comunicação com a atmosfera. Após a constatação da

estanqueidade, as extremidades livres devem ser imediatamente fechadas com bujões, caps ou flanges cegos, que só podem ser retirados quando da sua interligação a aparelhos a gás.

- 4.6.5 Quando a instalação apresentar reguladores de pressão, válvulas de alívio ou de bloqueio, estes devem ser instalados após o teste de estanqueidade.
- 4.6.6 A pressão máxima de teste exigida é de 1,5 vezes a pressão máxima de operação observando-se a pressão máxima de cada trecho da instalação interna. O trecho de baixa pressão deverá ser testado com pressão mínima de 9,8 kPa (1.000 mmca) e máxima de 100 kPa (1 kgf/cm²).
- 4.6.7 O tempo mínimo de manutenção da tubulação na pressão de teste deve ser de 60 minutos, depois de estabilizada a pressão de teste.
- 4.6.8 O manômetro a ser utilizado no teste de estanqueidade deve possuir sensibilidades adequadas para registrar quaisquer variações de pressão. (Ex: coluna d'áqua, mercúrio ou do tipo Bourbon).
- 4.6.9 A fonte de pressão deve ser destacada da tubulação, logo após a pressão na tubulação atingir o valor de teste.
- 4.6.10 Se existirem vazamentos e após repará-los, proceder a um novo teste de estanqueidade, de acordo com o procedimento anterior.

4.7 Purgação de instalações internas

- 4.7.1 Trechos de tubulação com volume hidráulico total até 50 litros, podem ser purgados diretamente com o gás combustível a ser utilizado. Acima deste volume, a purgação deve ser feita com gás inerte.
- 4.7.2 Todos os produtos de purgação devem ser obrigatoriamente canalizados para o exterior das edificações, em local seguro, não se admitindo o despejo destes produtos para o seu interior. Além disso, deve ser providenciado para que

não exista qualquer fonte de ignição no ambiente onde se está realizando a purgação das instalações.

- 4.7.3 A purgação de instalações internas deve ser realizada, introduzindo-se o gás de forma lenta e continuamente, não se admitindo que, durante esta operação, os lugares da purgação permaneçam desassistidos pelos técnicos responsáveis pela operação.
- 4.7.4 Caso uma tubulação com gás combustível, com volume hidráulico superior a 50 litros seja retirada de operação, para reformas ou consertos, esta tubulação deve ser purgada com gás inerte.
- 4.7.5 O cilindro de gás inerte deve estar munido de regulador de pressão e manômetros apropriados ao controle da operação de purgação.

4.8 Ponto de ligação de fogão a gás

A Figura 4.5, apresentada a seguir, mostra o aspecto construtivo da conexão de um fogão a gás com a instalação interna.

Ponto 2 Ver Det. 02 0 1 - Ponto de Alimentação Ø 1/2 (rosca) 2 - Medidas adotadas = centímetros DETALHE 1 DETALHE 2 Ligar Ligar

FIGURA 4.5: PONTO DE LIGAÇÃO DE FOGÃO A GÁS (residencial)

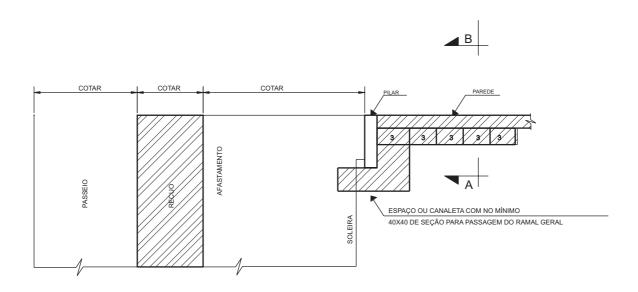
Se o tubo flexível for instalado com a finalidade de afastamento do fogão, para permitir o acesso à parte traseiro do equipamento, o ponto de fornecimento de gás e o ponto da entrada do gás no fogão, deverão estar alinhados, a fim de evitar-se torção na operação de afastamento do mesmo.

5. Local de medição do gás

Neste item do Manual de Instalações Prediais, são mostrados alguns procedimentos mínimos de segurança e construção referentes ao local de medição do gás.

5.1 Generalidades

A seguir estão apresentados alguns aspectos gerais sobre a localização do abrigo do medidor de gás.


- 5.1.1 O local de medição do gás não pode ser utilizado para qualquer outro fim a não ser aquele a que se destina.
- 5.1.2 No local da medição de gás, os equipamentos instalados (medidor, válvula, regulador, etc.), devem estar protegidos contra:
 - a) Choque mecânico.
 - b) Ação de substâncias corrosivas.
 - c) Fontes produtoras de calor ou chama.
 - d) Faíscas ou fontes de ignição elétrica.
 - e) Outros agentes externos de efeitos danosos.
- 5.1.3 Todo o local de medição de gás deve estar provido de iluminação adequada para a execução dos serviços de manutenção e leitura dos medidores. O interruptor para acionamento de lâmpadas elétricas deverá ser instalado do lado de fora do abrigo e a luminária deverá ser a prova de explosão.
- 5.1.4 O local de medição de gás de uma economia isolada deve estar em condições de fácil acesso, pertencente à própria economia, situado no alinhamento da residência, com frente voltada para a rua.
- 5.1.5 O abrigo de medidores individuais pode ficar acima do abrigo dos medidores de água, desde que o ponto de entrada para o medidor esteja, no máximo, 1,5 m acima do piso.

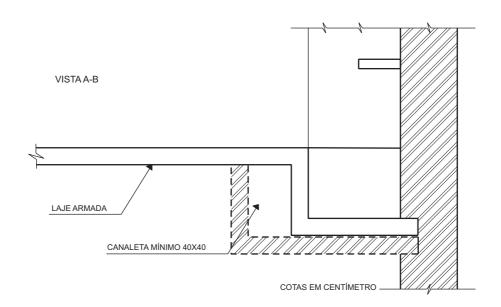

As figuras apresentadas a seguir mostram algumas sugestões para abrigos de medidores.

FIGURA 5.1 LOCALIZAÇÃO DE MEDIDORES

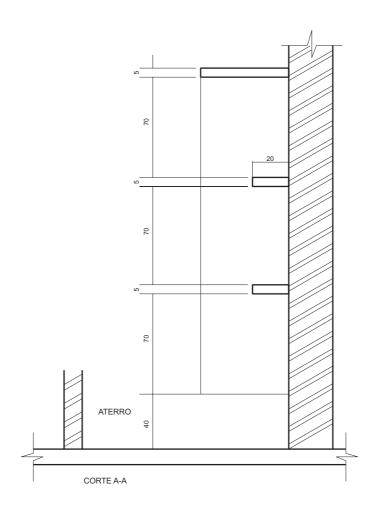

Sobre Lages de piso com pavimentos ou não inferior.

FIGURA 5.2 LOCALIZAÇÃO DE MEDIDORES (caso especial) Ramal geral sobre Lajes de piso com pavimento ou vão inferior

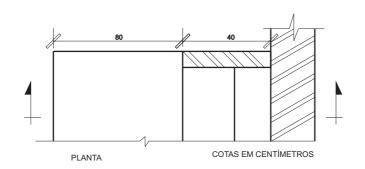
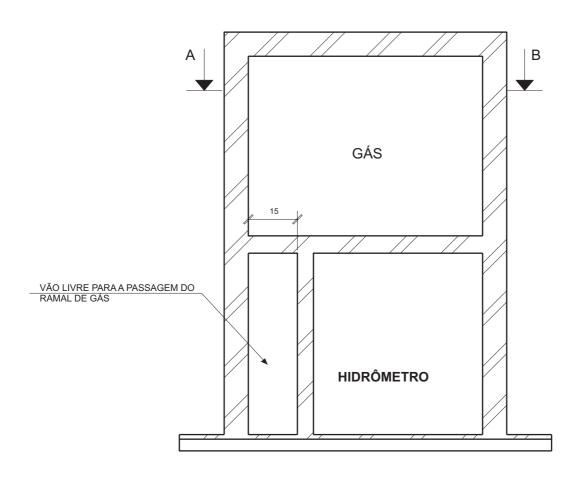
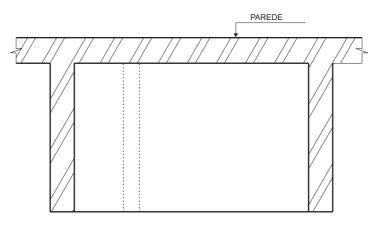
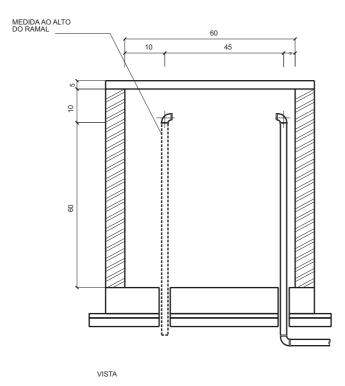
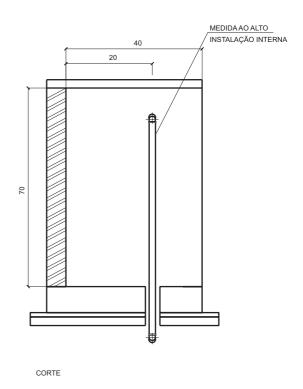




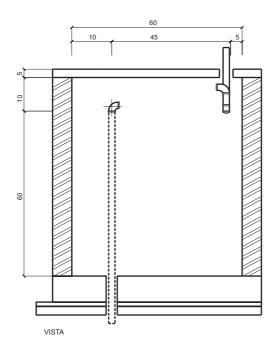
FIGURA 5.3
LOCALIZAÇÃO DE MEDIDORES (caso especial)
Caixa de proteção sobre o hidrômetro

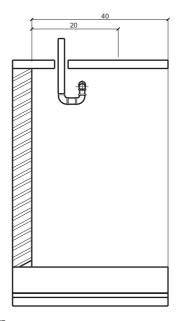
CORTE AB

PLANTA


COTAS EM CENTÍMETROS

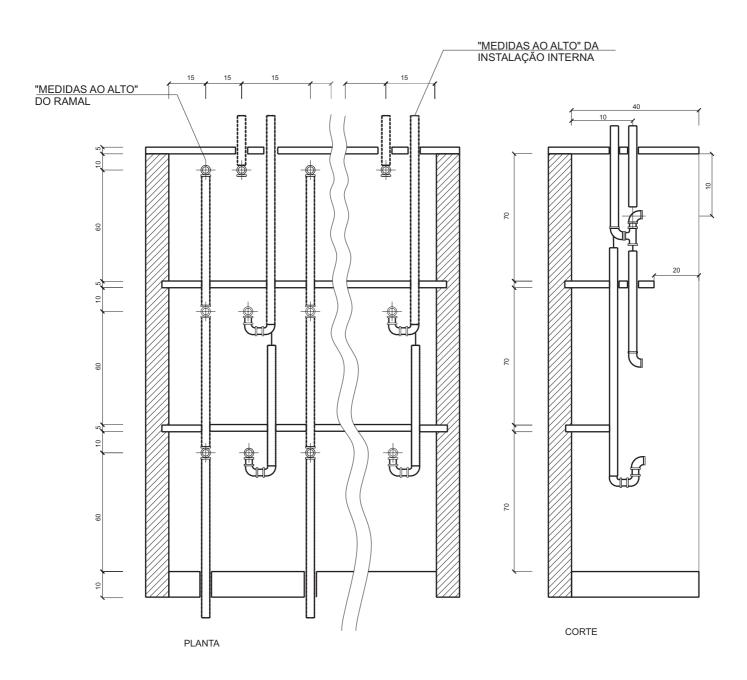


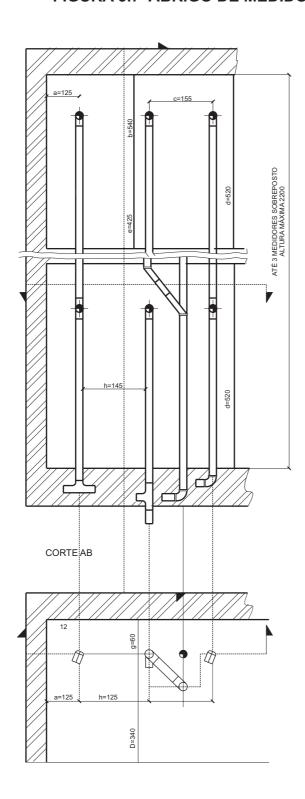

FIGURA 5.4: ABRIGO DE MEDIDOR

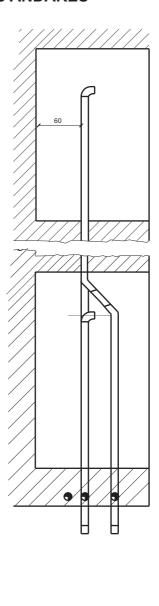

Para um medidor individual com detalhes das "medidas ao alto" para ligação

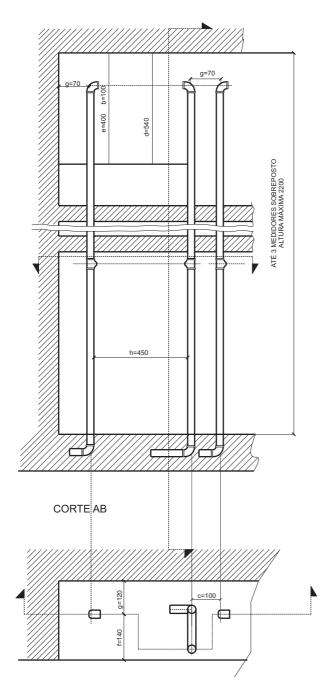
Descarga máxima: 1.680 kcal/min.

FIGURA 5.5: ABRIGO DE MEDIDOR


Armário com caixas de proteção para "n" medidores individuais com detalhes das "medidas ao alto" para ligação


FIGURA 5.6 - ABRIGO DE MEDIDOR


Armário com caixas de proteção para "n" medidores individuais com detalhes das "medidas ao alto".


FIGURA 5.7 ABRIGO DE MEDIDORES NOS ANDARES

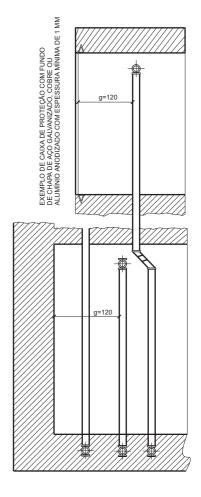
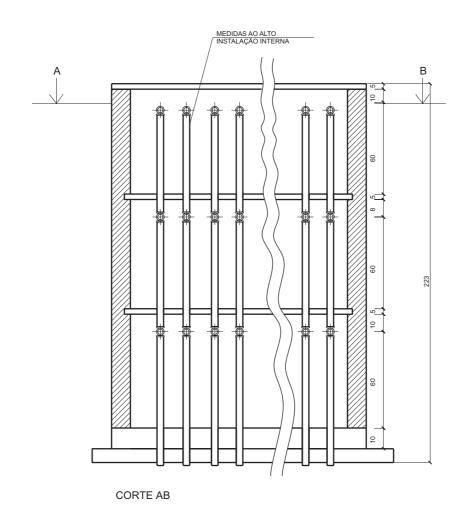


FIGURA 5.8 ABRIGO DE MEDIDOR NOS ANDARES


Observações:

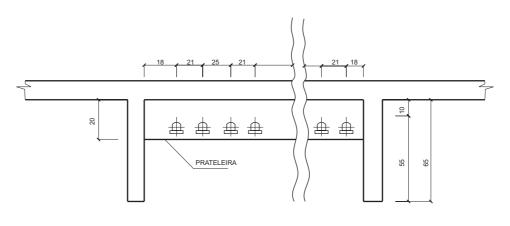
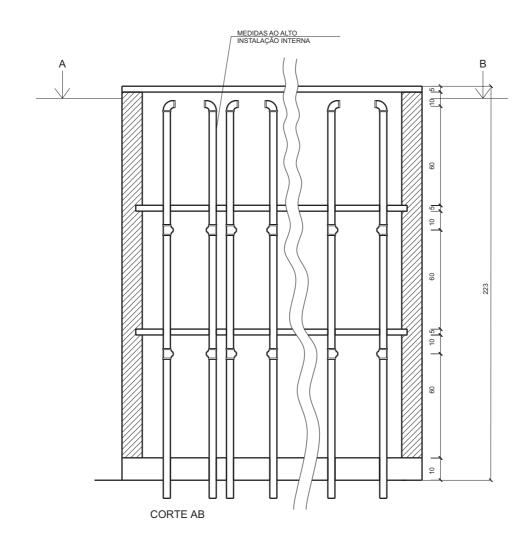

- Cotas em mm.
- As conexões para ligação de cada medidor devem ter os eixos horizontais perfeitamente coincidentes.
- Os valores indicados para as dimensões a, b, c, d, e, f e g, são mínimos aceitáveis.
- O valor indicado para dimensão h é fixo.
- Os desvios podem ser feitos por encurvamento dos tubos.
- Deverá ser prevista uma ventilação permanente através de duto vertical adjacente as caixas de proteção.

FIGURA 5.9 ABRIGO DE MEDIDOR

Para "n" medidores em paralelo com detalhes das "medidas ao alto" para ligação Descarga máxima: n x 2.800kcal/min


PLANTA

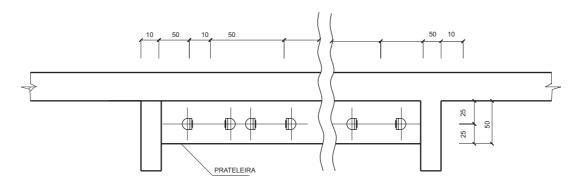
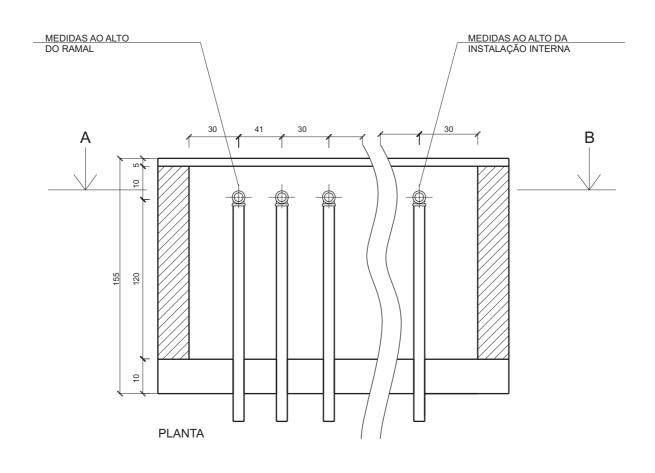

COTAS EM CENTÍMETROS

FIGURA 5.10 ABRIGO DE MEDIDOR

Para "n" medidores em paralelo com detalhes das "medidas ao alto" para ligação Descarga máxima: "n" x 2.800 kcal/min



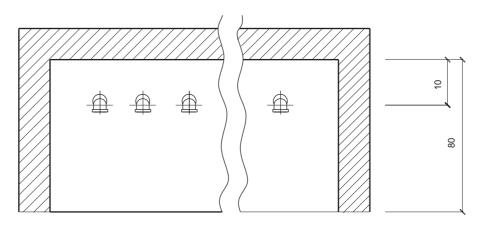

PLANTA

FIGURA 5.11 ABRIGO DE MEDIDOR

Para "n" medidores em paralelo com detalhes das "medidas ao alto" para ligação Descarga máxima: "n" x 8.400 kcal/min

CORTE AB

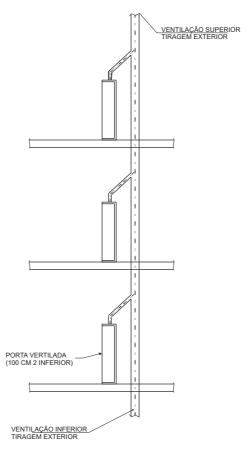
COTAS EM CENTÍMETRO

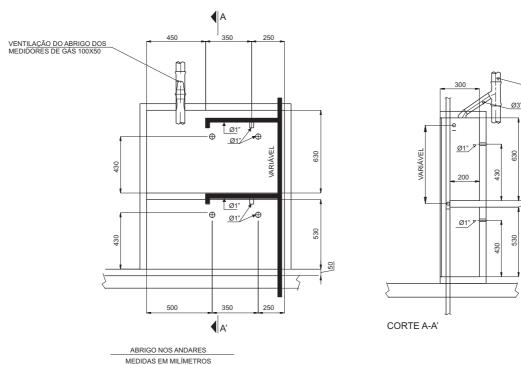
5.2 Ventilação

- 5.2.1 Os abrigos localizados no interior das edificações, distribuídos por entre os andares ou agrupados nos locais de entrada ou hall, devem ser providos de:
 - a) Porta ventilada na parte inferior, com no mínimo de 200 cm² de área útil.
 - b) Ventilação permanente com o exterior, conforme Figura 5.13.
 - c) Duto de ventilação com área correspondente, no mínimo, a 10 cm², por medidor previsto no respectivo abrigo, mas não inferior ao diâmetro de 50 mm.
 - d) Quando o duto de ventilação dos abrigos de medidores for aparente, deve ser de material incombustível e resistente a água.

5.2.2 Medidas e Tolerâncias

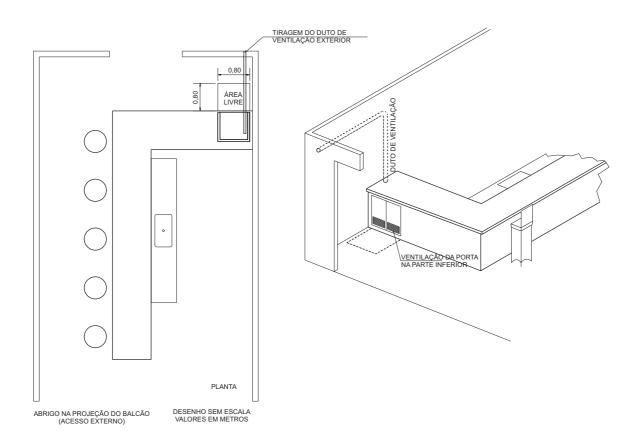
À distância entre os pontos (entrada e saída do gás), para a instalação do medidor deve atender o que se segue:


- a) Ambos devem estar alinhados na mesma altura em relação ao piso.
- b) A altura máxima em relação ao piso é de 1,7 metros.
- c) A altura mínima em relação ao piso é de 0,5 metros.
- d) À distância entre ambos, em função do consumo ©, deve ser:


© ≤ 2,5 m³/h	0,25 m	
2,5 m³/h < © ≤ 6,0 m³/h	0,35 m	

e) Os pontos de entrada e saída para conexão ao medidor devem estar 0,1 m distantes de qualquer obstáculo.

FIGURA 5.12: DUTO PARA VENTILAÇÃO COLETIVA DE ABRIGOS SITUADOS NOS ANDARES



5.3 Medidores instalados em balção de estabelecimentos comerciais

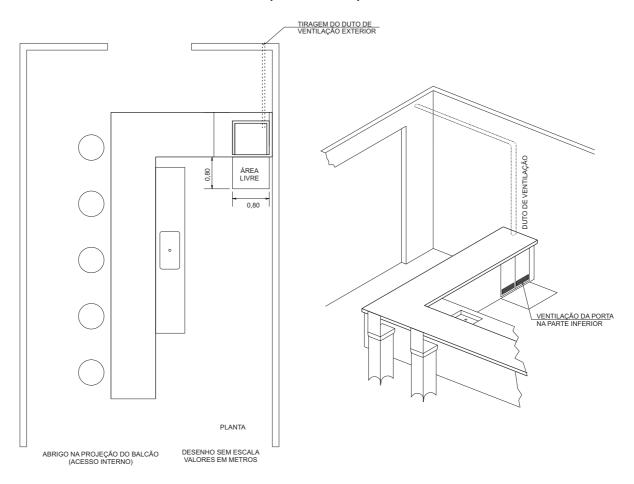

- a) Os medidores podem ser instalados no interior dos balcões dos estabelecimentos comerciais, desde que obedeçam as condições de segurança estabelecidas neste Manual.
- b) Como orientação, pode-se consultar as Figuras 5.13, 5.14 e 5.15.

FIGURA 5.13: MEDIDOR INSTALADO NO INTERIOR DE BALCÃO (Desenho A)

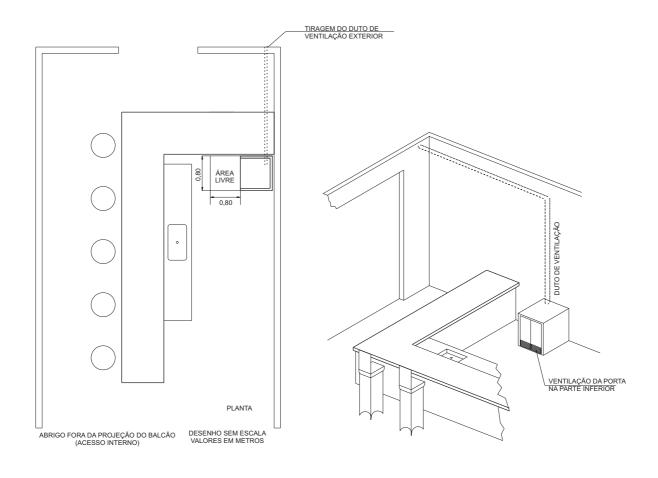


FIGURA 5.14: MEDIDOR INSTALADO NO INTERIOR DE BALCÃO (Desenho B)

FIGURA 5.15: MEDIDOR INSTALADO NO INTERIOR DE BALCÃO (Desenho C)

5.4 Medição coletiva em edifícios

- a) Local de medição de gás coletiva de um conjunto de economias deve estar em área de servidão comum.
- b) Quando da instalação de medição de gás coletiva, deve-se providenciar para que na tubulação que deriva para os apartamentos se possibilite a instalação de medidor individual, com dispositivo para a leitura a distância.

5.5 Medição à distância

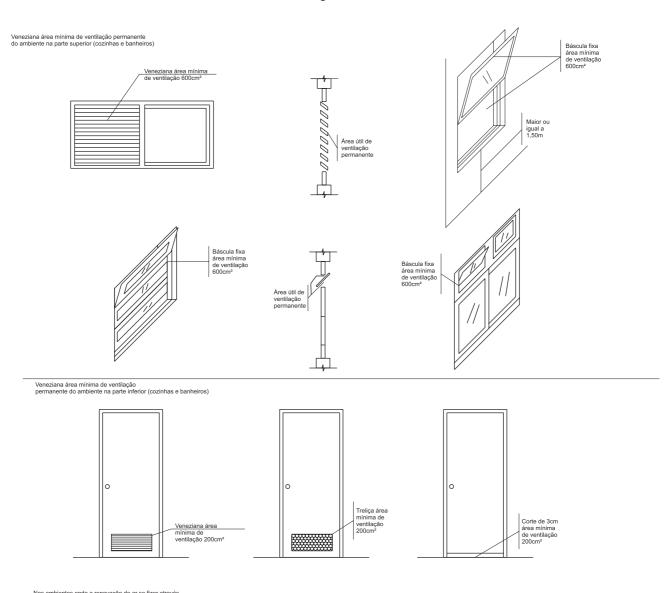
Será permitida a adoção de sistema de medição do volume do gás a distância (medição remota), desde que observados:

- a) Os medidores são instalados de acordo com as normas de segurança estabelecidas neste Manual.
- b) A inexistência de interferências elétrica/eletrônicas que prejudiquem a leitura.

6. Condições das instalações e das conexões de aparelhos a gás

A seguir estão descritos assuntos referentes à ventilação permanente mínima e chaminés, visando a segurança das instalações internas.

6.1 Ventilação permanente (áreas mínimas)


Para efetuar a ventilação dos locais que contêm aparelhos a gás, isto é, o suprimento de ar para a combustão e a exaustão do ar viciado ou dos produtos da combustão, conforme o caso, é necessário que esta ventilação seja feita para o exterior, ou seja, para o ar livre ou para espaços, situados ou não, dentro do volume do edifício que tenham essas características.

As Figuras 6.1 e 6.2, a seguir, mostram alguns tipos de ventilações permanentes mínimas.

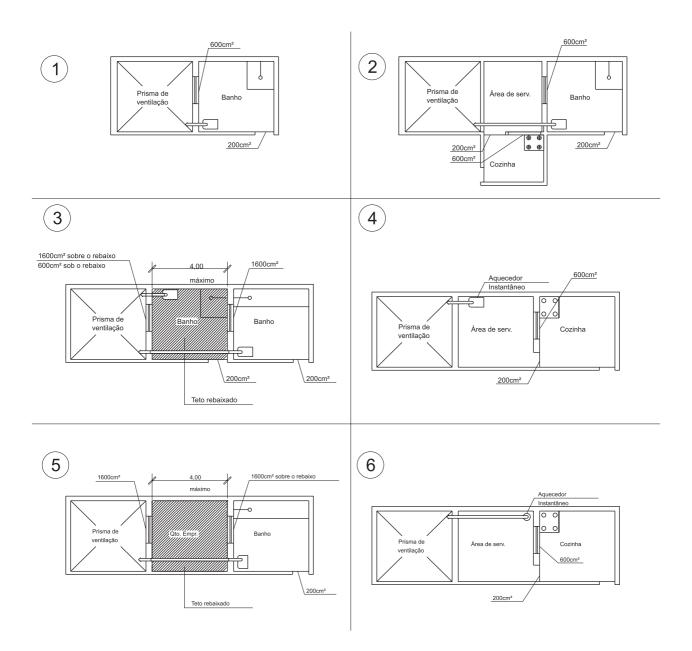
Quando forem dirigidos produtos da combustão para um prisma de ventilação, é recomendável instalar um duto na parte inferior do referido prisma, a fim de permitir a entrada de ar do exterior para garantir a renovação do ar no mesmo.

FIGURA 6.1 TIPOS DE VENTILAÇÕES PERMANENTES MÍNIMAS

Nos ambientes onde a renovação de ar se fizer através de exaustão mecânica. A área mínima de ventilação inferior deverá ser 600m²

Os aparelhos de utilização devem ser corretamente instalados Observe os detalhes abaixo apresentados

Registro


Chaminé

Registro

O registro de gás dever ficar em local de fácil acesso

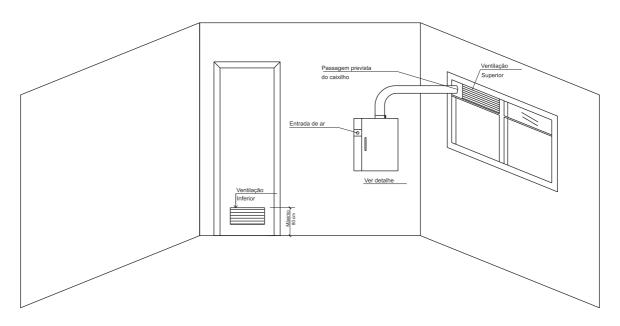
FIGURA 6.2 TIPOS DE VENTILAÇÕES PERMANENTES MÍNIMAS

Importante:

- Os ambientes onde estão instalados os aparelhos a gás, deverão ser permanentemente ventilados.
- Todo rebaixo, por onde estiver passando o percurso horizontal da chaminé de alumínio, deverá possuir ventilação permanente para o exterior.

6.2 Chaminés

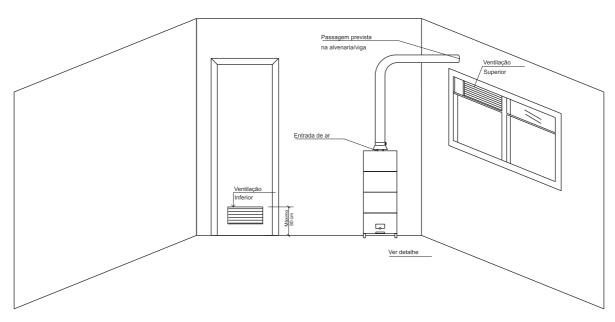
O estudo das técnicas para proporcionar uma adequação de ambiente ideal é muito vasto, indo desde uma simples ventilação por meio de janelas, frestas nas portas, até sistemas complexos automáticos acionados por controles elétricos.


6.2.1 Chaminé individual com tiragem natural

A seguir estão descritos comentários e procedimentos necessários para a exaustão dos produtos da combustão de aparelhos a gás.

- a) O projeto e a execução são de responsabilidade de profissionais legalmente habilitados.
- b) Os aquecedores tipo de passagem ou de acumulação, **preferencialmente**, devem ser instalados na área de serviço. Para que isso ocorra com segurança, deve-se seguir os volumes mostrados na tabela a seguir.
- c) A chaminé individual deve ser implantada de modo a conduzir a totalidade dos gases de exaustão para o exterior da edificação, através do menor percurso possível, evitando-se extensões horizontais e curvas. As Figuras 6.3 e 6.4 mostram a instalação de chaminé individual em um aquecedor de passagem e um aquecedor de acumulação, respectivamente, instalados em uma área de serviço.
- d) O trecho vertical da chaminé, que antecede o primeiro desvio, deve ter a altura mínima de 0,60 metros, a partir da entrada de ar do defletor até a geratriz inferior do primeiro desvio.
- e) O diâmetro mínimo da chaminé individual não pode ser inferior ao diâmetro de saída do defletor do aparelho de utilização.

FIGURA 6.3 DETALHES DA INSTALAÇÃO DE UM AQUECEDOR DE PASSAGEM



DETALHE MOSTRANDO A PAREDE EM CORTE

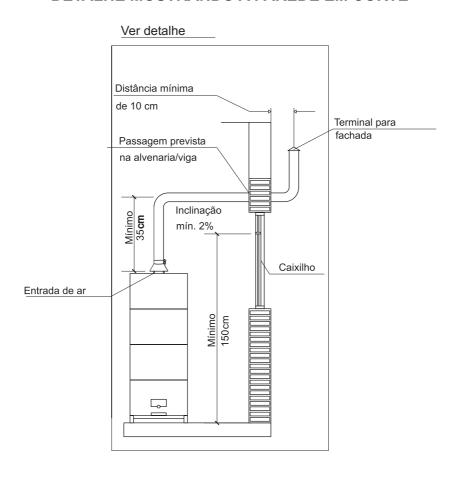

Distância mínima de 10 cm Passagem prevista na alvenaria/viga Inclinação mín. 2% Entrada de ar

FIGURA 6.4 DETALHES DA INSTALAÇÃO DE UM AQUECEDOR DE ACUMULAÇÃO

DETALHE MOSTRANDO A PAREDE EM CORTE

- f) Os terminais de chaminé não devem ser instalados nas seguintes condições:
 - Abaixo de cumeeiras de telhados inclinados:
 - A menos de 0,25 m, em coberturas plana sem obstrução;
 - A menos de 0,25 m de uma linha imaginária entre os pontos mais alto e o mais baixo dos obstáculos;
 - A menos de 0,25 m de um parapeito ou borda de telhado, quando a chaminé subir externamente.
- g) É permitida a colocação do terminal nas faces das edificações, quando existir uma altura mínima de 0,80m, entre a saída do aparelho e a base do terminal da chaminé.
- h) O terminal da chaminé deve apresentar área livre igual a pelo menos duas vezes a área da seção da chaminé.
- i) Quando não for possível atender as disposições descritas anteriormente, poderá ser utilizada a exaustão mecânica.

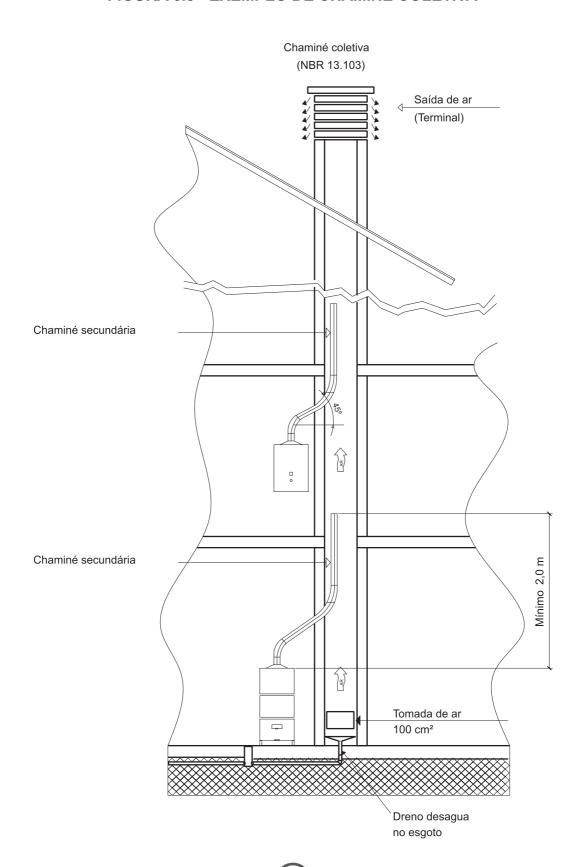
6.2.2 Chaminé individual com exaustão forçada

Para este tipo de chaminé, deve-se proceder, como descrito a seguir.

- a) O exaustor instalado na chaminé deverá ser a prova de explosão e calor.
- b) Na exaustão mecânica, deve ser instalado dispositivo que permita cortar o fornecimento de gás quando o exaustor não funcionar.

6.2.3 Chaminé coletiva com tiragem natural

Para este tipo de chaminé, deve-se proceder, como descrito a seguir.


a) Deve ser executada com materiais incombustíveis, resistentes a altas temperaturas e a corrosão.

- b) Devem ser instaladas com juntas estanques e arrematadas uniformemente;
- c) A chaminé individual que deve ser conectada a uma coletiva, deve ter uma altura mínima de 2,0 m, podendo haver, no máximo, 2 chaminés individuais por pavimento. A Figura 6.5, a seguir, mostra um modelo de chaminé individual conectada a uma coletiva;
- d) Cada chaminé coletiva deve servir, no máximo, a 9 pavimentos;
- e) A ligação da chaminé individual a uma coletiva deverá ter inclinação igual ou maior do que 135°;
- f) O trecho não vertical da chaminé individual deverá apresentar inclinação mínima de 30°;
- g) Na parte inferior da chaminé coletiva deve existir uma abertura para ventilação, com área mínima de 100 cm²;

FIGURA 6.5 - EXEMPLO DE CHAMINÉ COLETIVA

h) O dimensionamento das chaminés coletivas deve atender a tabela, a seguir.

POTÊNC	IA MÁXIMA (H	(cal/min)	SEÇÃO CIR	RCULAR	SEÇÃO
Altura menor do que 10 m	Altura entre 10 m e 20 m	Altura maior do que 20 m	Diâmetro Interno (cm)	Área (cm2)	RETANGULAR Área (cm2)
até 250	até 250	até 250	8,5	57	63
até 416	até 416	até 416	10	79	87
até 500	até 500	até 666	11	95	105
até 666	até 666	até 1.000	12,5	123	135
até 833	até 1.000	até 1.333	14	154	169
até 1.000	até 1.333	até 1.750	15,5	189	208
até 1.166	até 1.750	até 2.083	17	226	249
até 1.333	até 2.083	até 2.583	18	255	280
até 1.666	até 2.583	até 3.000	20	314	345
até 2.000	até 3.000	até 3.550	22	380	418
até 2.333	até 3.483	até 4.316	24	452	497
até 2.716	até 4.016	até 5.000	26	531	584

Para potências maiores do que as indicadas na tabela devem-se aumentar a seção da chaminé de acordo com a seguinte relação:

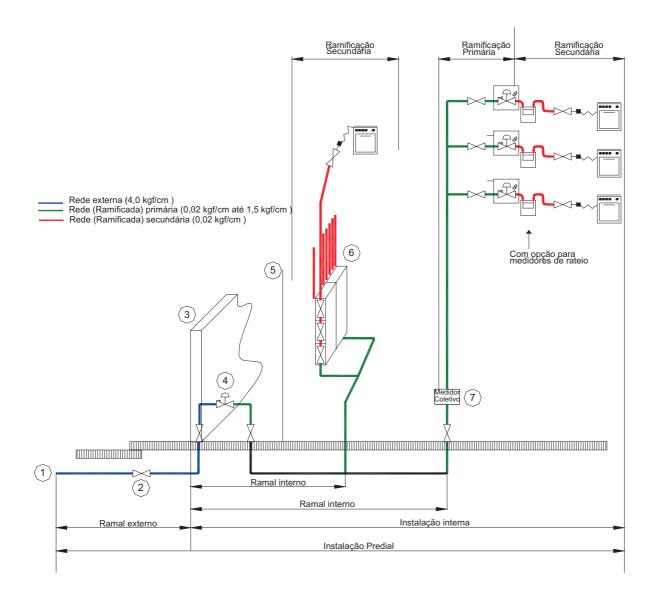
h 10 m	3,5 cm ² por 1,2 kW (17,2 kcal/min).
10 h 20 m	2,5 cm ² por 1,2 kW (17,2 kcal/min).
h 20 m	2,0 cm ² por 1,2 kW (17,2 kcal/min).

7. Dimensionamento das tubulações

Neste item mostra-se uma metodologia para executar o dimensionamento de instalações internas que utilizam gás natural. Utilizando a metodologia apresentada no Manual, ou ainda, optando-se por outro procedimento de cálculo, o projeto deverá ser analisado e aprovado pela COPERGÁS.

A Figura 7.1, mostrada a seguir, apresenta algumas definições importantes dos componentes de uma instalação interna.

Em relação à potência dos parelhos a gás que será utilizada no dimensionamento das instalações internas, é importante definir o que significa potência computada e potência adotada.


Potência Computada: é a potência nominal dos aparelhos de utilização de gás, que deve ser obtida através do fabricante do equipamento. Na falta dessa informação, pode-se utilizar a Tabela 7.1, apresentada a seguir, que mostra a potência de vários aparelhos a gás, utilizados nos segmentos residencial e comercial.

Potência Adotada: é a potência que efetivamente será utilizada no dimensionamento das instalações internas. Para o cálculo da potência adotada, leva-se em consideração o fator de simultaneidade.

A Tabela 7.2 mostra a correlação entre a potência computada e a potência adotada levando-se em consideração o fator de simultaneidade.

FIGURAS 7.1 ESQUEMA DE DEFINIÇÕES DOS COMPONENTES DE INSTALAÇÃO

Legenda:

- 1) Rede Geral sob o passeio ou pista de rolamento.
- 2) Registro de segurança e logradouro público.
- 3) Limite de propriedade.
- 4) Regulador de pressão.
- 5) Fachada do prédio.
- 6) Cabine de medidores individuais.
- 7) Caixa de medidor coletivo.

TABELA 7.1 - POTÊNCIA NOMINAL DOS APARELHOS DE UTILIZAÇÃO

APARELHOS	TIPO	POT	TÊNCIA	Vazão de Gás	
		(kW)	(Kcal/h)	Natural (Nm3/h)	
Fogão 4 bocas	com forno	8,1	7.000	0,78	
Fogão 4 bocas	sem forno	5,8	5.000	0,55	
Fogão 6 bocas	com forno	18,8	11.000	1,22	
Fogão 6 bocas	sem forno	9,3	8.000	0,89	
Forno de parede		3,5	3.000	0,33	
Aquecedor acumulativo	50-75 Its	8,7	7.500	0,83	
Aquecedor acumulativo	100-150 Its	10,5	9.000	1	
Aquecedor acumulativo	200-300 Its	17,4	15.000	1,67	
Aquecedor de passagem	6 Its./min	10,5	9.000	1	
Aquecedor de passagem	8 Its./min	14	12.000	1,33	
Aquecedor de passagem	10 lts./min	17,1	14.700	1,63	
Aquecedor de passagem	15 Its/min	26,5	22.000	2,44	
Aquecedor de passagem	25 Its./min	44,1	38.000	4,22	
Aquecedor de passagem	30 Its/min	52,3	45.000	5	
Secadora de roupa		7	6.000	0,67	
Aquecedor de ambiente		4	35.000	0,38	
Lareira		5,8	5.000	0,55	
Nota: Vazão=potência (kcal	/h) PCI do gás r	atural (9.000 ko	cal/m3).		

PCI=Poder Calorífico Inferior.

7.1 Determinação do fator de Simultaneidade

Como já foi definido anteriormente o fator de simultaneidade relaciona-se com a potência computada e com a potência adotada de acordo com a equação abaixo:

Onde $P_{\scriptscriptstyle A}$ e a potência adotada; $P_{\scriptscriptstyle C}$ é a potência computada e F é o fator de simultaneidade.

A determinação do fator de simultaneidade pode ser realizada através das equações expressas a seguir, segundo NR 14570.

- Equações para cálculo do fator de simultaneidade com Pc em kcal/min.

$$C < 350$$
 $F = 100$

350 < C < 9612
$$F = \frac{100}{\left[1 + 0.001 \cdot \left(P_C - 349\right)^{0.8712}\right]}$$

9612 < C < 20000
$$F = \frac{100}{[1 + 0.4705 \cdot (P_C - 1055)^{0.19931}]}$$

$$C > 20000$$
 $F = 23$

- Equações para cálculo do fator de simultaneidade com Pc1 em kW.

$$C_1 < 24,43$$
 $F = 100$

24,43 <
$$C_1$$
 < 670,9 $F = \frac{100}{[1 + 0.01016 \cdot (P_{C1} - 24.37)^{0.8712}]}$

670,9 <
$$C_1$$
 < 1396 $F = \frac{100}{[1+0,7997 \cdot (P_{C1}-73,67)^{0,19931}]}$

$$C_1 > 1396$$
 $F = 23$

Para o dimensionamento das prumadas dos edifícios residenciais, deve-se utilizar a Tabela 7.2, mostrada a seguir.

TABELA 7.2: TUBOS DE AÇO Dimensionamento das Prumadas Ascendentes

POTÊNCIA ADOTADA (kCAL/MIN)	BITOLA (pol.)
Até 350	3/4"
de 350 a 704	1"
de 705 a 1546	1 1/4"
de 1547 a 2396	1 1/2"
de 2397 a 4844	2"
de 1845 a 7940	2 1/2"
de 7950 a 14465	3"
de 14466 a 30257	4"

Nota: Aço Shedulle 40

TABELA 7.3: TUBOS DE COBRE Dimensionamento das Prumadas Ascendentes

POTÊNCIA ADOTADA (kCAL/MIN)	BITOLA (pol.)
Até 313	22
de 314 a 602	28
de 603 a 1054	35
de 1055 a 1700	42
de 1701 a 3211	54

Para a utilização das Tabelas 7.2 e 7.3, deve-se seguir as seguintes instruções:

- a) Determinar a potência adotada para os vários trechos da prumada ascendente.
- b) Os trechos, cujas potências adotadas para dimensionamento se enquadrem dentro dos limites estabelecidos na coluna a esquerda da tabela, tem os respectivos diâmetros indicados na coluna a sua direita.

A seguir, nas Tabelas 7.4 a 7.7, estão mostrados os valores dos diâmetros dos trechos das tubulações, em função da potência adotada. Vale apenas ressaltar que, nos valores apresentados nas tabelas já estão consideradas as perdas de cargas provenientes das tubulações, conexões e válvulas.

Para instalações internas com ramificações primárias e secundárias, admitiu-se uma perda de carga de 10 mmca. Já para instalações que possuem somente ramificações secundárias, admitiu-se uma perda de carga de 15 mmca.

TABELA 7.4

Dimensionamento para Edificações com Ramificações

Primárias e Secundárias

								TUBOS	DE AÇO
D	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"
L				consu	mo em Kc	al/mim			
1	679	1541	3096	6798	10535	21300	34951	63615	33047
2	480	1089	2189	4807	7450	15062	24714	44982	94078
3	392	889	1787	3925	6082	12298	20179	36728	76814
4	339	770	1548	3399	5267	10650	17475	31807	66523
5	303	689	1384	3040	4711	9526	15630	28449	59500
6	277	629	1264	2775	4301	8696	14268	25970	54316
7	256	582	1170	2569	3982	8051	13210	24044	50287
8	240	544	1094	2403	3725	7531	12357	22491	47039
9	226	513	1032	2266	3511	7100	11650	21205	44349
10	214	487	979	2149	3331	6735	11052	20116	42073
11	204	464	933	2049	3176	6422	10538	19180	40115
12	196	444	893	1962	3041	6149	10089	18364	38407
13	188	427	858	1885	2922	5907	9693	17643	36900
14	181	411	827	1817	2815	5692	9341	17001	35558
15	175	397	799	1755	2720	5499	9024	16425	34352
16	169	385	774	1699	2633	5325	8737	15903	33261
17	164	373	750	1648	2555	5166	8476	15428	32268
18	160	363	729	1602	2483	5020	8238	14994	31359
19	155	353	710	1559	2417	4886	8018	14594	30523
20	151	344	692	1520	2355	4763	7815	14224	29750
25	135	308	619	1359	2107	4260	6990	12723	26609
30	124	281	565	1241	1923	3889	6381	11614	24291
35	114	260	523	1149	1780	3600	5907	10752	22489
40	107	243	489	1074	1665	3367	5526	10752	21036
45	107	229	461	1013	1570	3175	5210	9483	19833
50	96	217	437	961	1490	3012	4942	8996	18815
		207							
55 60	91 87	198	417 399	916	1420 1360	2872	4712	8577	17940
60				877		2749	4512	8212	17176
65	84	191	384	843	1306	2642	4335	7890	16502
70	81	184	370	812	1259	2545	4177	7603	15902
75	78	177	357	785	1216	2459	4035	7345	15362
80	75 70	172	346	760	1177	2381	3907	7112	14875
85	73	167	335	737	1142	2310	3790	6900	14431
90	71	162	326	716	1110	2245	3684	6705	14024
95	69	158	317	697	1080	2185	3585	6526	13650
100	67	154	309	679	1053	2130	3495	6361	13304
110	64	146	295	648	1004	2030	3332	6065	12685
120	62	140	282	620	961	1944	3190	5807	12145
130	59	135	271	596	924	1868	3065	5579	11669
140	57	130	261	574	890	1800	2953	5376	11244
150	55	125	252	555	860	1739	2853	5194	10863
160	53	121	244	537	832	1683	2763	5029	10518
170	52	118	237	521	808	1633	2680	4879	10204
180	50	114	230	506	785	1587	2605	4741	9916
190	49	111	224	493	764	1545	2535	4615	9652
200	48	108	218	480	745	1506	2471	4498	9407

TABELA 7.5
Dimensionamento para Edificações com Ramificações Primárias e Secundárias

					TUBOS DE	COBRE
D	15	22	28	35	42	54
_						
L	I	I	consumo er	n Kcal/mim		
1	672	1755	3346	5888	9640	18880
2	475	1241	2366	4163	6816	13350
3	388	1013	1931	3399	5565	10900
4	336	877	1673	2944	4820	9440
5	300	785	1496	2633	4311	8443
6	274	716	1366	2403	3935	7707
7	254	663	1264	2225	3643	7136
8	237	620	1183	2081	3408	6675
9	224	585	1115	1962	3213	6293
10	212	555	1058	1862	3048	5970
11	202	529	1008	1775	2906	5692
12	194	506	965	1699	2782	5450
13	186	486	928	1633	2673	5236
14	179	469	894	1573	2576	5045
15	173	453	863	1520	2489	4874
16	168	438	836	1472	2410	4720
17	163	425	811	1428	2338	4579
18	158	413	788	1387	2272	4450
19	154	402	767	1350	2211	4331
20	150	392	748	1316	2155	4221
25	134	351	669	1177	1928	3776
30	122	320	610	1075	1760	3447
35	113	296	565	995	1629	3191
40	106	277	529	931	1524	2985
45	100	261	498	877	1437	2814
50	95	248	473	832	1363	2670
55	90	236	451	794	1299	2545
60	86	226	431	760	1244	2437
65	83	217	415	730	1195	2341
70	80	209	399	703	1152	2256
75	77	202	386	679	1113	2180
80	75	196	374	658	1077	2110
85	72	190	362	638	1045	2047
90	70	185	352	620	1016	1990
95	69	180	343	604	989	1937
100	67	175	334	588	964	1888
110	64	167	319	561	919	1800
120	61	160	305	537	880	1723
130	59	154	293	516	845	1655
140	56	148	282	497	814	1595
150	54	143	273	480	787	1541
160	53	138	264	465	762	1492
170	51	134	256	451	739	1448
180	50	130	249	438	718	1407
190	48	127	242	427	699	1369
200	47	124	236	416	681	1335
				-		

TABELA 7.6

Dimensionamento para Edificações Somente com Ramificações Secundárias

								TUBOS	DE AÇO
D	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"
L				consu	mo em Kc	al/mim			
1	831	1887	3792	8326	12903	26088	42806	77912	62949
2	588	1334	2681	5887	9124	18447	30268	55092	15222
3	480	1089	2189	4807	7450	15062	24714	44982	94078
4	415	943	1896	4163	6451	13044	21403	38956	81474
5	372	844	1695	3723	5770	11667	19143	34843	72873
6	339	770	1548	3399	5267	10650	17475	31807	66523
7	314	713	1433	3147	4877	9860	16179	29448	61588
8	292	667	1340	2943	4562	9223	15134	27546	57611
9	2 3 2 277	629	1264	2775	4302	8693	14268	25970	54316
10	263	596	1199	2633	4080	8249	13536	24638	51529
	263 250								
11		569	1143	2510	3890	7865	12906	23491	49130
12	240	544	1094	2403	3725	7531 7005	12357	22491	47039
13	230	523	1051	2309	3578	7235	11872	21609	45193
14	222	504	1013	2225	3448	6972	11440	20822	43549
15	214	487	979	2149	3331	6735	11052	20116	42073
16	207	471	948	2081	3225	6522	10701	19478	40737
17	201	457	919	2019	3129	6327	10382	18896	39520
18	196	444	893	1962	3041	6149	10089	18364	38407
19	190	433	869	1910	2960	5985	9820	17874	37383
20	186	422	847	1861	2885	5833	9571	17421	36436
25	166	377	758	1665	2580	5217	8561	15582	32589
30	151	344	692	1520	2355	4763	7815	14224	29750
35	140	319	640	1407	2181	4409	7235	13169	27543
40	131	298	599	1316	2040	4124	6768	12319	25764
45	124	281	565	1241	1923	3889	6381	11614	24291
50	117	266	536	1177	1824	3689	6053	11018	23044
55	112	254	511	1122	1739	3517	5772	10505	21972
60	107	243	489	1074	1665	3367	5526	10058	21036
65	103	234	470	1032	1600	3235	5309	9663	20211
70	99	225	453	995	1542	3118	5116	9312	19476
75	96	217	437	961	1490	3012	4942	8996	18815
80	93	211	423	930	1442	2916	4785	8710	18218
85	90	204	411	903	1399	2829	4642	8450	17674
90	87	198	399	877	1360	2749	4512	8212	17176
95	85	193	389	854	1323	2676	4391	7993	16718
100	83	188	379	832	1290	2608	4280	7791	16294
110	79	179	361	793	1230	2487	4081	7428	15536
120	75	172	346	760	1177	2381	3907	7112	14875
130	72	165	332	730	1131	2288	3754	6833	14291
140	70	159	320	703	1090	2204	3617	6584	13771
150	67	154	309	679	1053	2130	3495	6361	13304
160	65	149	299	658	1020	2062	3384	6159	12882
170	63	144	290	638	989	2002	3283	5975	12497
180	62	140	282	620	961	1944	3190	5807	12145
190	60	136	275	604	936	1892	3105	5652	11821
200	58	133	268	588	912	1844	3026	5509	11521
200	30	133	200	300	912	1044	3020	3309	11322

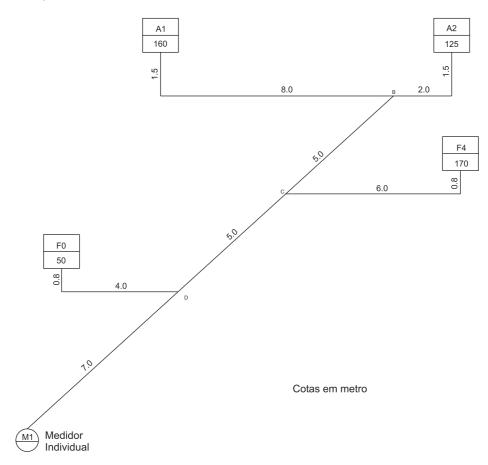
TABELA 7.7

Dimensionamento para Edificações Somente com Ramificações Secundárias

					TUBOS D	E COBRE
D	15	22	28	35	42	54
L			consumo ei	n Kcal/mim		
1	823	2150	4098	7211	11806	23123
2	582	1520	2897	5099	8348	16350
3	475	1241	2366	4163	6816	13350
4	411	1075	2049	3605	5903	11561
5	368	961	1832	3225	5280	10341
6	336	877	1673	2944	4820	9440
7	311	812	1548	2725	4462	8739
8	291	760	1448	2549	4174	8175
9	274	716	1366	2403	3935	7707
10	260	680	1295	2280	3733	7312
11	248	648	1235	2174	3559	6971
12	237	620	1183	2081	3408	6675
13	228	596	1136	2000	3274	6413
14	220	574	1095	1927	3155	6179
15	212	555	1058	1862	3048	5970
16	205	537	1024	1802	2951	5780
17	199	521	993	1749	2963	5608
18	194	506	965	1699	2782	5450
19	189	493	940	1654	2708	5304
20	184	480	916	1612	2640	5170
25	164	430	819	1442	2361	4624
30	150	392	748	1316	2155	4221
35	139	363	692	1219	1995	3908
40	130	340	647	1140	1866	3656
45	122	320	610	1075	1760	3447
50	116	304	579	1019	1669	3270
55	111	289	552	972	1592	3117
60	106	277	529	931	1524	2985
65	102	266	508	894	1464	2868
70	98	257	489	861	1411	2763
75	95	248	473	832	1363	2670
80	92	240	458	806	1320	2585
85	89	233	444	782	1280	2508
90	86	226	431	760	1244	2437
95	84	220	420	739	1211	2372
100	82	215	409	721	1180	2312
110	78	205	390	687	1125	2204
120	75	196	374	658	1077	2110
130	72	188	359	632	1035	2028
140	69	181	346	609	997	1954
150	67	175	334	588	964	1888
160	65	170	323	570	933	1828
170	63	164	314	553	905	1773
180	61	160	305	537	880	1723
190	59	156	297	523	856	1677
200	58	152	289	509	834	1635

Para a utilização das Tabelas 7.4 a 7.7, deve-se seguir as seguintes instruções:

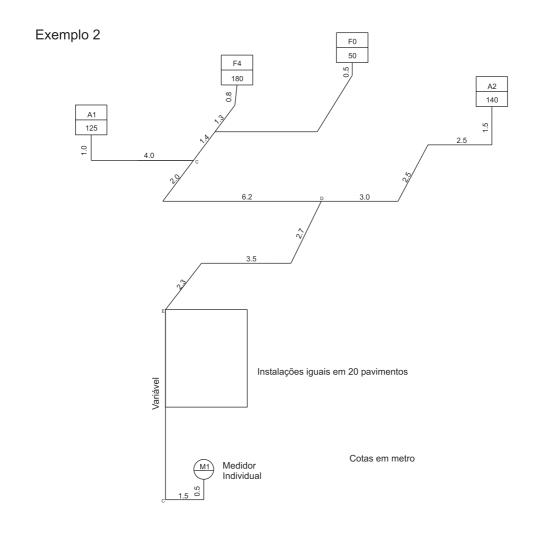
- a)Determine o consumo de gás em kcal/min., para cada aparelho de utilização previsto na instalação.
- b) Determine a distância em metros desde o medidor até o ponto mais afastado do medidor, não sendo considerados, nessa determinação, aparelhos de utilização com potência inferior a 100 kcal/min.
- c) Localize na tabela apropriada, a linha horizontal correspondente ao comprimento igual ou imediatamente superior ao determinado no item anterior.
- d) Determine a potência computada para cada aparelhos de utilização.
- e) Utilizando a Tabela 7.2, determine as potências adotadas no projeto para cada potência computada, determinada no item anterior.
- f) Começando pelos trechos mais afastados do medidor, localize na linha escolhida no item c, as colunas correspondentes aos consumos iguais ou imediatamente superiores aos dos trechos que se deseja dimensionar utilizando as potências adotadas determinadas no item "e".


No topo de cada coluna encontra-se o diâmetro que o trecho deverá ter.

7.2 Exemplos de dimensionamento de instalações internas

Para esclarecer, ainda mais, os procedimentos para a execução do dimensionamento das instalações internas, a seguir estão apresentados 3 exemplos de dimensionamento.

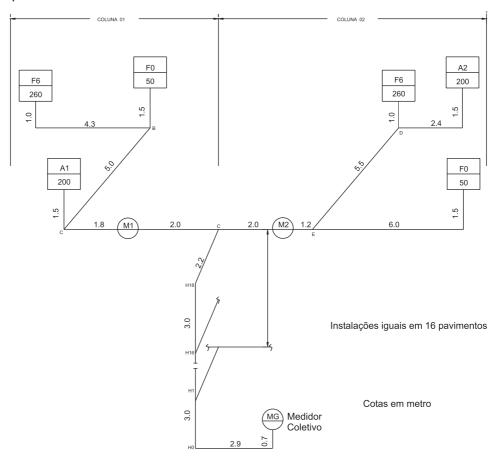
Exemplo 1



Folhas de Cáluculo Modelo A

Material dos Tubos: Cobre Colunas: Colunas: Distância do ponto mais afastado= 1,5+8,0+5,0+5,0+7,0=27 Distância do ponto mais afastado= **Potências Potências Limites dos** Limites dos Bitola pol. **Bitola** Computadas | Adotadas trechos trechos Computadas Adotadas A1 - B 160 160 22 A2 - B 125 125 15 125+160=285 22 B - C 285 F4 - C 170 170 22 C - D 170+285=455 430 28 F0 - D 15 50 50 D - MI 50+455=505 496 28

Rua:_____ Nº____Instalador _____ (Autor do projeto)


Folhas de Cáluculo Modelo A

Material dos Tubos: Aço Colunas: Colunas: Distância do ponto mais afastado= 1,0+4,0+2,0+6,2+2,7 +3,5+2,3+1,5+0,6=24 Distância do ponto mais afastado= **Potências Potências Limites dos** Limites dos Bitola pol. **Bitola** trechos Computadas Adotadas trechos Computadas **Adotadas** F0 - B 1/2 80 50 F4 - B 180 180 3/4 B - C 50+180=230 230 3/4 1/2 A1 - C 125 125 C - D 230+125=355 355 3/4 **A2 - D** 140 140 1/2 1" D-E 140+355=795 460 **PRUMADA** 460 E-G 495 1" G - MI 495 460

Rua:_____ Nº____Instalador_____ (Autor do projeto)

Exemplo 3

Folhas de Cáluculo Modelo A

Material dos Tubos: Cobre Colunas: Colunas: Distância do ponto mais afastado= 1,0+4,3+5,0+1,8+2,0 FALSO Distância do ponto mais afastado= **Limites dos Potências Potências** Limites dos Bitola pol. **Bitola** trechos Computadas Adotadas trechos Computadas **Adotadas** F6 - B 260 260 22 A2 - D 200 200 22 F0 - B 50 15 F6 - D 22 50 260 260 <u>D- E</u> B - C 260-50=310 310 260+200=460 430 28 22 **50** A1 - C 200 200 22 F0 - E 50 15 50+460=510 C - G 310+200=510 469 28 E-G 469 28 **PRUMADA** H18 - H17 810 35 510X2=1020 H17-H16 510X2X2=2040 1347 42 H16 - H0 510X2X2X18=18360 3610 54 H0 - MG 18360 3610 54

Rua:_____ Nº____Instalador _____ (Autor do projeto)

8. DOCUMENTAÇÃO DAS INSTALAÇÕES

8.1 Considerações gerais

Na hora de projetar e construir e antes da entrada em operação de uma instalação interna de gás, deve-se elaborar uma determinada documentação técnica que evidencie as características e condicionantes legais da mesma.

Todas as empresas, assim como os seus técnicos responsáveis deverão ser cadastrados na COPERGÁS. Esse cadastro será realizado por categoria, mostrando para que tipo de serviços essas empresas e seus técnicos responsáveis poderão executar. A seguir estão mostradas algumas categorias que serão criadas.

- a) Projeto de Instalações Internas;
- b) Execução de Ramais Internos;
- c) Execução de Instalações Internas;
- d) Execução de Adequação de Ambientes;
- e) Execução de Reparos e Adequações nas Instalações Internas;
- f) Execução da Conversão de Aparelhos de Utilização para o Uso de Gás Natural;
- g) Etc.

As instalações internas devem ser projetadas por técnicos habilitados, que gerenciarão a obra, devendo ser construídas por uma Empresa Instaladora de Gás, cadastrada na COPERGÁS.

O interessado, ou a pessoa autorizada deverá apresentar, perante o órgão territorial competente, o projeto específico da instalação interna de gás, redigido e assinado pelo competente técnico habilitado e visado pelo correspondente Órgão Oficial, no qual tramitará o projeto.

No projeto técnico específico, deverão constar, além de todas as descrições, cálculos e plantas necessárias para defini-lo e construí-lo, todas as recomendações e instruções necessárias para o bom funcionamento, manutenção e revisão da instalação projetada.

O original e uma cópia do projeto técnico detalhado deverá ser entregue a COPERGÁS para aprovação. Após a aprovação do mesmo, a COPERGÁS manterá em seus arquivos a cópia do projeto, devolvendo ao técnico responsável o original, devidamente assinado.

A execução da montagem, dos testes e verificações regulamentares destas instalações, caberá a uma Empresa Instaladora cadastrada na COPERGÁS, e deve ser efetuado de acordo com o projeto específico da instalação. Esta execução será efetuada somente por Instaladores Autorizados, sob o controle e a responsabilidade do técnico habilitado, Gerente de Obra da instalação interna de gás.

Uma vez efetuada a instalação e realizados os testes e inspeções regulamentares, e sempre antes de ser colocada em operação, será necessário que o interessado, ou a pessoa autorizada, apresente ao órgão territorial competente, um certificado de gerência e conclusão da obra, subscrito pelo técnico responsável que a efetuou e visado pela COPERGÁS.

Deverão ser apresentados um original e três cópias deste certificado de gerência e conclusão da obra que, depois de diligenciadas pelo órgão territorial, ficarão de posse do interessado, sendo seus destinatários, o técnico diplomado, o proprietário da instalação interna e a COPERGÁS.

Neste certificado de gerência e conclusão da obra, deverá constar expressamente que a instalação interna foi executada de acordo com o projeto técnico específico, registrado no órgão territorial competente e que cumpre todos os requisitos exigidos na regulamentação em vigor. Igualmente, far-se-ão constar os resultados dos testes e verificações de caráter geral ou parcial a que tenha dado lugar, bem como, se for o caso, as variações de detalhe que o Diretor Técnico tiver realizado no projeto primitivo.

Além do projeto técnico, do certificado de gerência e conclusão da obra, acompanhado dos resultados dos testes e verificações, a seguir estão descritos outros documentos técnicos necessários, que fazem parte do cadastro das instalações internas de gás natural.

- Folhas de dados dos medidores, reguladores e válvulas.
- Certificado de calibração dos manômetros.
- Relatório de conversão dos aparelhos a gás.

9. Referências normativas

A seguir estão relacionadas as Normas Brasileiras (NBR's), que devem ser consultadas quando da implantação de instalações internas para gás natural.

NBR 5419: Proteção de estruturas contra descargas atmosféricas.

NBR 5580: Tubos de aço carbono para roscas Whitwoth gás para usos comuns de condução de fluídos.

NBR 5590: Tubos de aço-carbono com requisitos de qualidade para condução de fluídos.

NBR 5883: Solda branca.

NBR 6493: Emprego de cores fundamentais para tubulações industriais.

NBR 6925: Conexões de ferro fundido maleável de classe 150 e 300, com rosca NPT para tubulações.

NBR 6943: Conexões de ferro maleável para tubulações classe 10.

NBR 7541: Tubo de cobre sem costura para refrigeração e ar condicionado.

NBR 11720: Conexões para unir tubos de cobre por soldagem ou brasagem capilar.

NBR 12727: Medidor de gás tipo diafragma para instalações prediais dimensões.

NBR 12912: Rosca NPT para tubos dimensões.

NBR 13103: Adequação de ambientes residenciais para instalação de aparelhos que utilizam gás combustível.

NBR 13127: Medidor de gás tipo diafragma para instalações residenciais especificação.

NBR 13128: Medidor de gás tipo diafragma para instalações residenciais método de ensaio.

NBR 13206: Tubos de cobre leve, médio e pesado para a condução de água e outros fluídos.

NBR 14177: Tubo flexível metálico para instalações domésticas de gás combustível.

NBR 14570: Instalações internas para uso alternativo dos gases Gás Natural e GLP projeto e execução.

NBR NM-ISO 7-1: Rosca para tubos onde a junta de vedação sob pressão é feita pela rosca Parte 1: dimensões, tolerâncias e designação.

ANSI/ASME B 16.3: "Malleable iron threaded fittings".

ANSI/ASME B 16.5: "Pipe flanges & flanged fittings".

ANSI/ASME B 16.9: "Factory-made wrought steel butt welding fittings".

ANSI/FCI.70.2: "American national standard for control valve seat leakage.

Para maiores informações sobre as Normas relacionadas com a implantação de instalações internas de gás combustível, consultar o site da Associação Brasileira de Normas Técnicas (ABNT), cujo endereço eletrônico é o seguinte:

Http://www.abnt.org.br

Direitos Reservados:

COPERGÁS - Companhia Pernambucana de Gás Natural

Av. Domingos Ferreira, 4060 15° Andar

Fone: (81) 3463.2000 / Fax: (81) 3463.2020

E-mail: copergas@copergas.com.br Site: www.copergas.com.br

