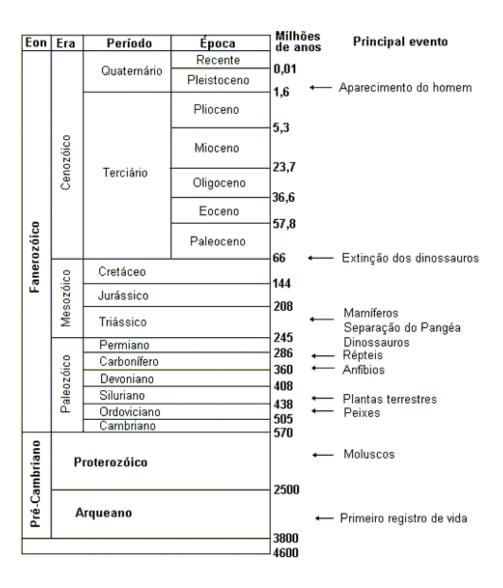
# Estrutura geológica e formas de relevo


## A Terra: Idade e evolução

Crosta terrestre: camada superficial mais externa do planeta.

Contém evidências sobre a evolução da Terra e vestígios animais (fósseis)

- A datação aproximada das rochas e meteoritos, bem como da idade da Terra, foi possível através da radioatividade com o aprofundamento da geocronologia.
- Método de datação radiométrica ocorre através da análise da presença de elementos radioativos nas rochas e minerais (desintegração do átomo radioativo por transmutação – período chamado de meia-vida)

## Escala de tempo geológico



## Éons (vida)

Hadeano – Minerais densos, como o ferro, afundaram e formaram o Núcleo da Terra. Na superfície o magma, menos denso, ao se resfriar formou uma crosta com as primeiras rochas.

Arqueano – consolidação da crosta terrestre. Devido ao calor e vapor de água, formou-se a atmosfera (camada gasosa) e ocorreram as primeiras chuvas (aparecimento de organismos unicelulares).

Proterozóico – consolidação de rochas e blocos continentais, aparecimento de organismos multicelulares nos Oceanos, como algas e bactérias que contribuíram para modificar a composição da atmosfera (liberação de oxigênio).

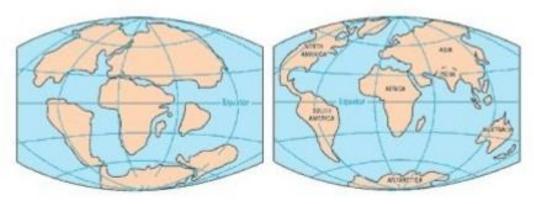
Fanerozóico – diversificação da vida

<u>Era paleozóica</u> - peixes, moluscos, plantas, insetos, anfíbios, formação da Pangéia (única massa continental)

Era Mesozóica desenvolvimento de répteis e aves.

<u>Era Cenozóica</u> divisão do continentes, grandes cadeias montanhosas, aparecimento dos mamíferos e dos seres humanos.

### Teoria da Deriva Continental


- Essa teoria foi baseada na semelhança entre o litoral da América do Sul e da África (tipos de rochas e fósseis).
- Em 1912, o cientista alemão Alfred Wegener lançou uma teoria que dizia que os continentes estavam em movimento, deslizando sobre o manto pastoso do interior da Terra.
- Ele admitiu que, a princípio, existira um grande continente chamado Pangéia (toda a Terra), que fora se fraturando e deslizando em diversas direções, dando origem, primeiramente, a dois grandes continentes, a Laurásia (Euramérica e Angara) e a Gonduana, e, posteriormente, dando origem à atual configuração do planeta.



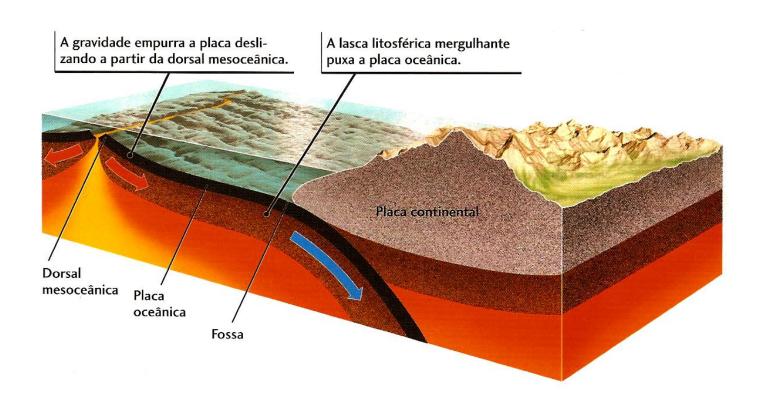
Permeano - 225 milhões de anos

Triássico - 200 milhões de anos

Jurássico - 135 milhões de anos



Cretáceo - 65 milhões de anos


Atualidade

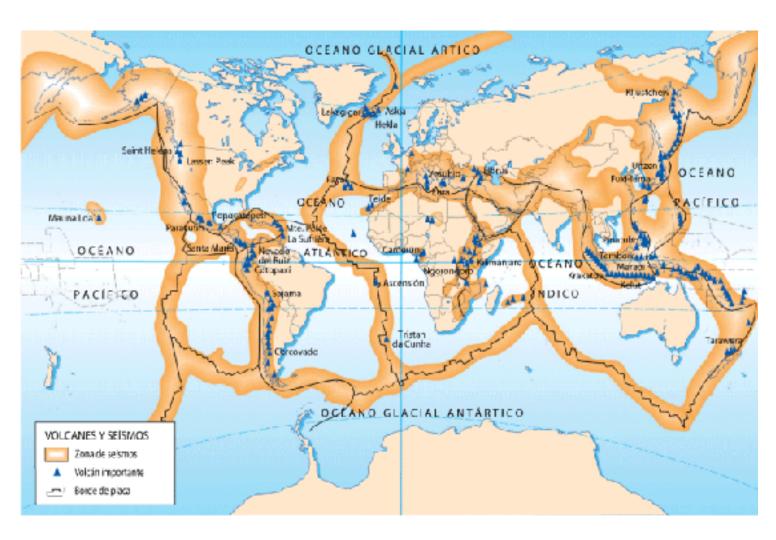


### Teoria da Tectônica de Placas

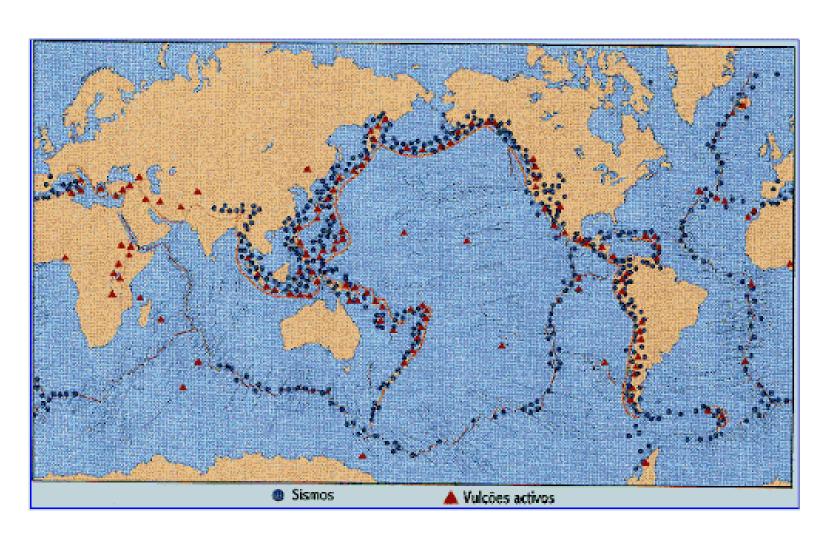
- Essa teoria foi formulada pelo pesquisador norte-americano Janson Morgan, com base nos estudos de Harry Hess.
- De acordo com essa teoria, a litosfera é um envoltório descontínuo, dividida em placas tectônicas que se apóiam ou flutuam sobre as camadas superiores do manto superior, a astenosfera.
- Impulsionadas pela energia do interior da Terra, as placas deslocam-se horizontal e verticalmente.

- As placas podem se <u>chocar</u>, se <u>afastar</u> ou <u>deslizar ao longo de outras</u>, dando origem a enormes cadeias montanhosas, os chamados <u>dobramentos modernos</u>.
- Descobriu-se que existem cordilheiras submersas (dorsais) nos oceanos, contendo falhas por onde emergem lavas vulcânicas. Essas lavas, ao se resfriarem, dão origem a uma nova parte da crosta terrestre.




#### ATIVIDADES SÍSMICAS E VULCÂNICAS

- As bordas das placas tectônicas constituem áreas em formação ou de dobramento onde ocorrem inúmeros abalos sísmicos, além de atividades vulcânicas. Isto se explica pelo fato das placas estarem em movimento.
- Nestes casos, formam-se fendas (rifts) por onde passa a lava, produzindo vulcões (quando a falha chega até a superfície) e terremotos ou maremotos (quando há obstrução a passagem da lava).


As áreas que estão mais sujeitas a abalos sísmicos são aquelas que coincidem com as bordas das placas tectônicas.



## Áreas Sísmicas

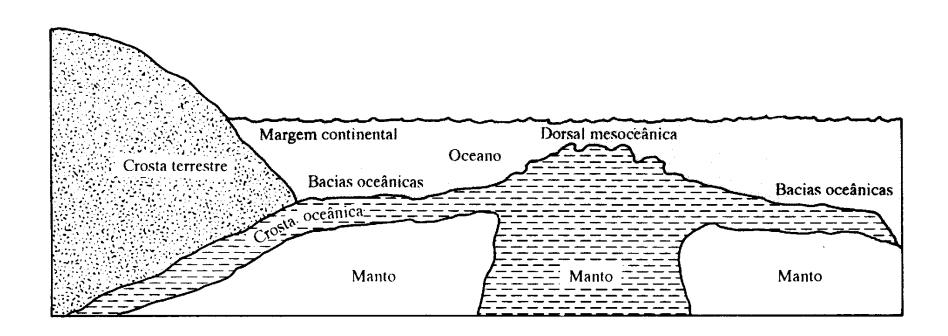


## Áreas Sísmicas Observe o círculo de fogo no Oceano Pacífico

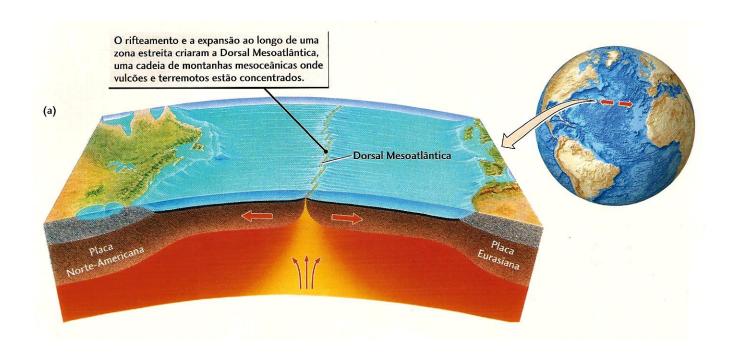


 O conhecimento do assoalho marinho e as dorsais submarinas só foi possível a partir da propagação do som para detectar essas formas de relevo: a sondagem acústica com aparelhos como o sonar que permitem determinar a profundidade.

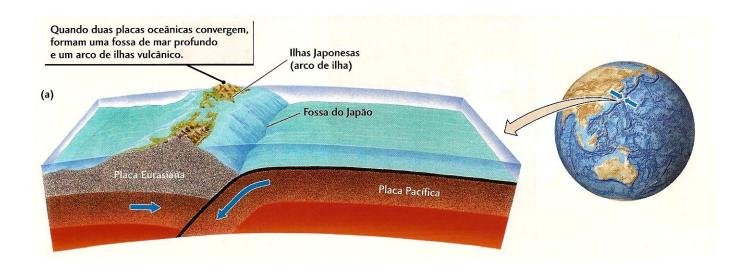
Tal tecnologia, foi primeiramente utilizada no período das Guerras Mundiais para localizar submarinos inimigos.


|                                                                                                                                                                                                  | ,                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| LIMITES CONSTRUTIVOS                                                                                                                                                                             | PLACAS COM MOVIMENTO DIVERGENTE    |
| O sentido do movimento relativo entre<br>as duas placas litosféricas faz com<br>que elas se afastem uma da outra<br>devido à ascensão de magma.<br>Ocorre a formação de nova litosfera.          | Magma                              |
| LIMITES DESTRUTIVOS                                                                                                                                                                              | PLACAS COM MOVIMENTO CONVERGENTE   |
| O sentido do movimento relativo entre<br>as duas placas litosféricas faz com<br>que elas se aproximem uma da outra.<br>Ocorre destruição de litosfera.                                           |                                    |
| LIMITES CONSERVATIVOS                                                                                                                                                                            | PLACAS COM MOVIMENTO TRANSFORMANTE |
| O sentido do movimento relativo entre<br>as duas placas litosféricas faz com<br>que elas deslizem lateralmente uma<br>em relação à outra.<br>Não ocorre formação nem destruição<br>de litosfera. |                                    |

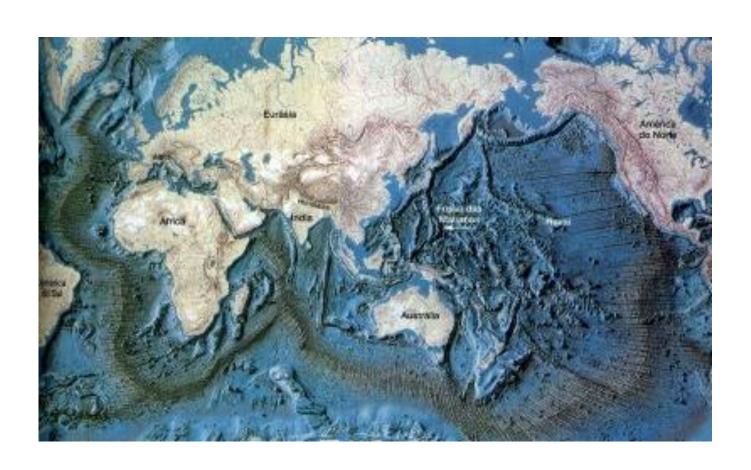
#### EXEMPLOS DE MACROFORMAS DO RELEVO


#### A) Cordilheira Mesoceânica

Exemplo de placas divergentes (que se deslocam em sentidos opostos) dando origem a cadeia Mesoceânica. A medida que se afastam há extravasamento da lava e consequente crescimento desta cadeia.


#### Cordilheira Mesoceânica




## DIVERGÊNCIA ENTRE PLACAS OCEÂNICAS



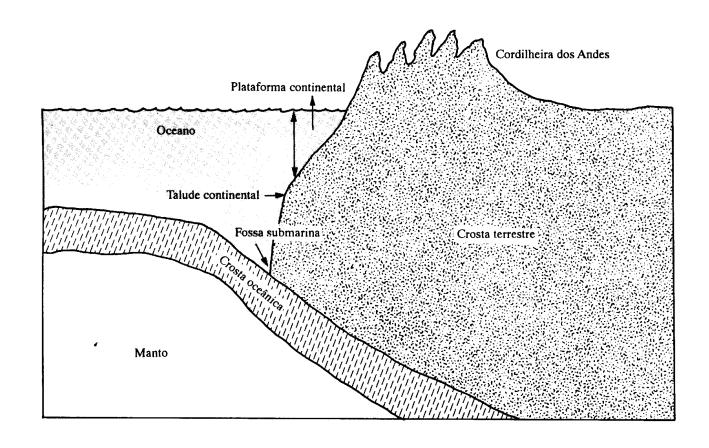
## CONVERGÊNCIA ENTRE PLACAS OCEÂNICAS



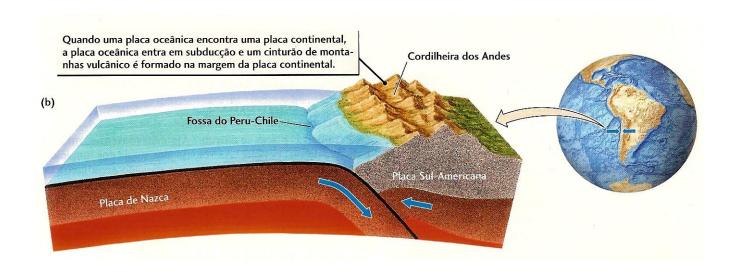
## Dorsais Oceânicas



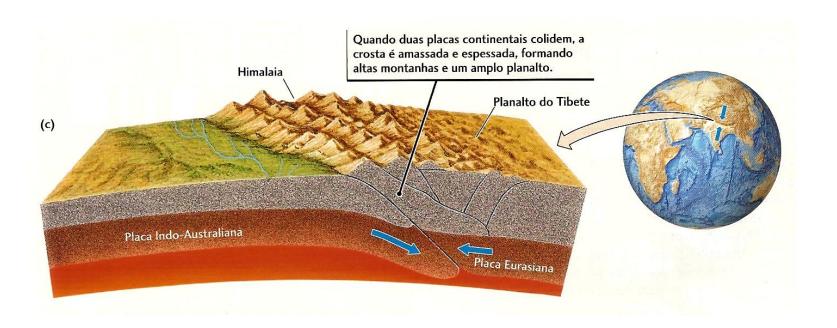
## B) Zona de Subducção


Ocorre quando uma placa oceânica submersa se choca (placas convergentes) com uma placa continental entrando debaixo desta, dirigindo-se para o Interior da Terra. Com a temperatura elevada ocorre a refusão e a desintegração da rocha.

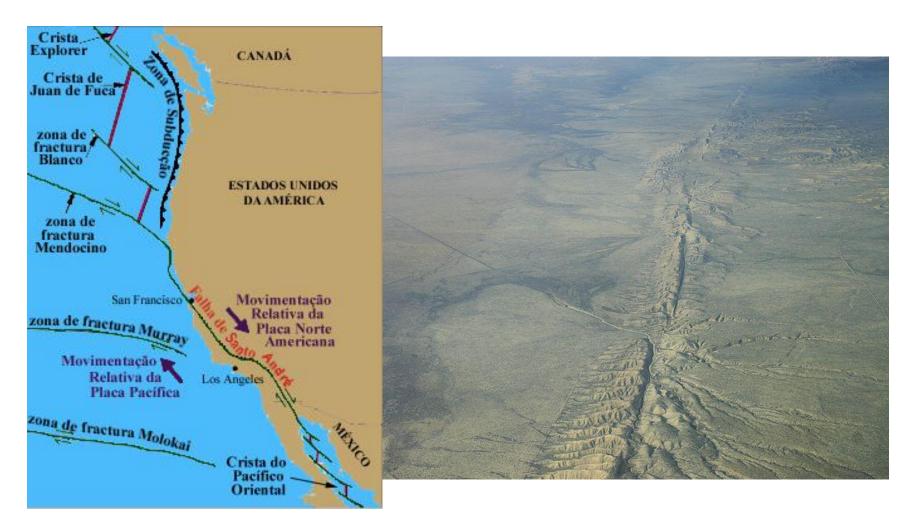
Esse movimento contribui para a **elevação da crosta** e **formação de fossas oceânicas** de grande profundidade.


#### **Montanhas Rochosas**




## Zona de Subducção




## CONVERGÊNCIA ENTRE UMA PLACA OCEÂNICA E UMA CONTINENTAL.



## CONVERGÊNCIA ENTRE DUAS PLACAS CONTINENTAIS



## C) Placas Conservativas ou Transformantes Ex: Falha de San Andreas (EUA)



## Tipos de Rocha

**Rochas:** agregados naturais de minerais. Exemplos: granito, basalto, gnaisse, mármore, arenitos etc.







## Magmáticas ou Ígneas:

São resultantes da solidificação do magma. Ocorre de duas formas:

#### • No interior da Terra:

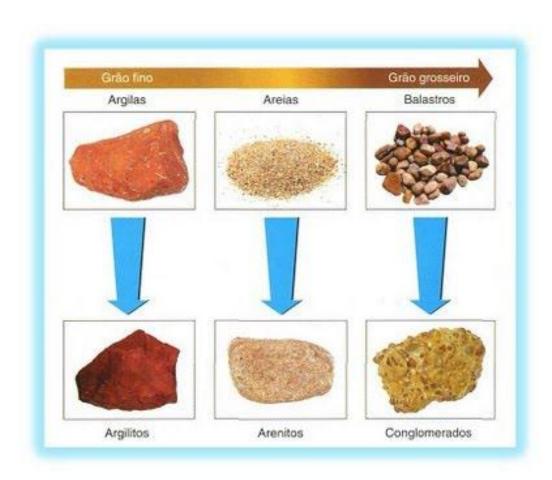
formando rochas intrusivas ou plutônicas. Apresentam cristais grandes, estruturados em um lento processo de resfriamento **Ex:** granito

Na superfície terrestre:

 formando rochas extrusivas ou vulcânicas. Se consolidam na superfície através de um rápido resfriamento, muitas vezes sem formar cristais visíveis a olho nu.

Ex: basalto

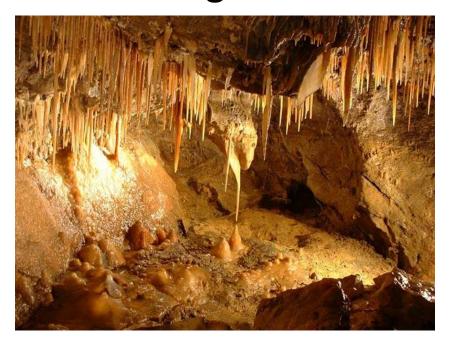





#### **Rochas Sedimentares**

São formadas pela desintegração de rochas pré-existentes (ígneas ou metamórficas) e compactação de sedimentos ao longo de milhões de anos.

Isso se dá através do intemperismo (mecânico, químico ou biológico) cujos agentes, ventos, chuvas, altas temperaturas e gravidade contribuem para o processo de erosão e deposição de sedimentos, promovendo a diagênese.


Ex: arenitos, argilitos

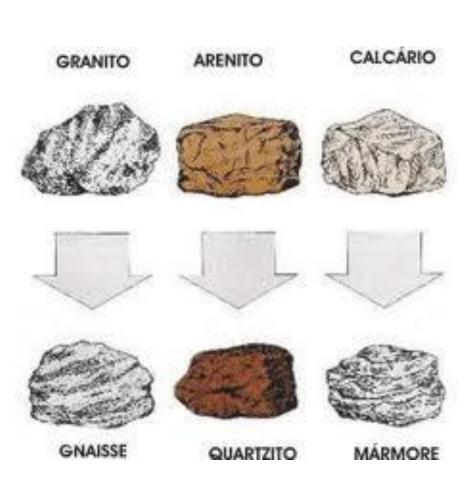


Em meio aos estratos deste tipo de rocha é possível encontrar vestígios fósseis além da formação de jazidas petrolíferas, de carvão e de gás natural.

## Varvito de Itu

## Estalactites e Estalagmites






#### Rochas Metamórficas

São aquelas que resultam da transformação de rochas magmáticas ou sedimentares, quando submetidas a altas pressões e temperaturas, que modificam a estrutura original da mesma.

Aqui, os minerais se reorientam formando novos minerais, dando origem a uma nova rocha.

Ex: Mámore, Quartizito e Gnaisse.



## Formação do Relevo

#### Os agentes internos (endógenos) – modeladores do relevo

 <u>Tectonismo ou diastrofismo</u> – produzem fraturas ou falhas com movimentos lentos de subida ou descida de grandes áreas – MOVIMENTOS EPIROGENÉTICOS.

Ex: Rift Valey africano(porção oriental).

Tal movimento pode dar origem a dobramentos formando montanhas ou cordilheiras. Ex: Alpes, Andes...

- <u>Vulcanismos</u> Montanhas formadas pela erupção de material magmático.
- <u>Terremotos</u> movimentos bruscos que geram abalos sísmicos.
   Possui um epicentro de onde se propagam ondas sísmicas. Em ambiente marítimo, são conhecidos como maremotos que podem dar origem a tsunamis.

#### <u>Agentes externos (exógenos) – Esculpidores do relevo</u>

Blocos de rochas são transformados em pedaços menores ou em pequenas partículas que são transportadas. Isso se dá pelo desgaste da rocha através do <u>intemperismo</u>. Os fragmentos removidos e transportados no processo de <u>erosão</u> se depositam (acumulação de sedimentos = sedimentação).

## Ventos

 Erosão eólica – formação de dunas (depósitos de areias móveis)



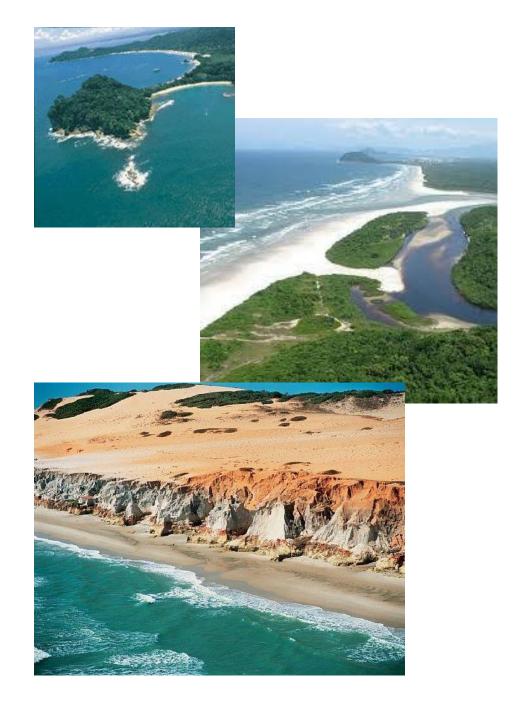
### Rios

 Erosão fluvial – provoca desgaste, transporte e deposição de sedimentos formando bacias, extensas planícies e deltas na foz dos rios Ex; foz do rio Nilo (África) e do rio Parnaíba (Brasil) e Grad Canyon (EUA)








## Chuvas

 Erosão pluvial: a água é um importante agente erosivo, principalmente sobre as rochas expostas e solos sem cobertura vegetal. As enxurradas e torrentes promovem grande arraste de materiais e desbarrancamentos.

### Mar

Erosão (abrasão) marinha –
 a ação das águas nas
 regiões litorâneas favorece
 a formação das <u>praias</u> e de
 <u>tômbolos</u> (depósitos de
 sedimentos que ligam uma
 ilha ao continente).

As <u>restingas</u> ou barras (depósitos de areia paralelos ao litoral) também são formadas, assim como as <u>falésias</u> (paredões litorâneos escarpados)



## Geleiras

Erosão glacial – o
 deslocamento lento desses
 blocos de gelo arrasta uma
 grande quantidade de
 sedimentos através da
 quebra de rochas,
 formando vales em forma
 de U, como os fiordes.





## Seres Vivos

- As raízes das plantas pressionam rochas.
- Minhocas, tatus e formigas escavam a terra (reações químicas acontecem com restos orgânicos de animais e plantas)
- Recifes de coral formado a partir de depósitos de conchas, animais marinhos e plantas.
- Homem Erosão antrópica Construção de cidades, estradas, desviando cursos de rios, mineração – isso pode alterar e acelerar o ciclo natural

# Estrutura Geológica

#### Escudos Cristalinos

Formados por rochas antigas (magmáticas e metamórficas) datadas do período de formação da crosta terrestre.

- são de tectônica estável;
- resistentes;
- muito desgastadas pela erosão.

#### Ex: Escudo Brasileiro

Há também os dobramentos antigos datados da Era Pré-Cambriana, como por exemplo os Montes Apalaches nos EUA e a Serra do Mar no Brasil.

#### ESTRUTURA GEOLÓGICA DO BRASIL



#### Bacias Sedimentares

Formadas em depressões preenchidas por sedimentos oriundos de áreas de maior altitude. Associa-se a presença de petróleo, carvão e gás natural.

Ex: Bacia Amazônica e do Pantanal

#### Dobramentos Modernos

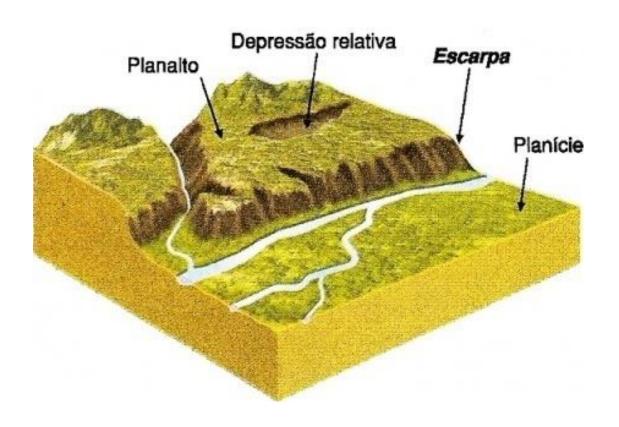
De formação recente, da era Cenozóica. Montanhas Rochosas, Alpes, Andes, Himalaia e cadeia do Atlas são exemplos desse tipo de formação, onde é produto do choque de placas tectônicas.

### Formas de Relevo

#### Montanhas

- Jovens com maiores altitudes e picos pontiagudos.
- Velhas desgastadas pela erosão com altitudes moderadas e formas mais suaves e arredondadas.

 <u>Planaltos</u> – formações onde predomina o processo de EROSÃO formando relevos escarpados (superfícies íngremes) e chapadas (presença de topo aplainado), por exemplo.


#### Formas de Relevo

 <u>Planícies</u> – Predomina o processo de sedimentação e, em sua maior parte, situa-se em terras de baixas altitudes. Ex: planícies fluviais, litorâneas e lacustres.

### Depressões

- Absolutas abaixo do nível do mar. Ex mar Morto (395m)
- Relativas em superfícies localizadas em altitudes mais baixas do que o relevo circundante.

### Formas de relevo



Escarpa da Serra do Mar - RJ





Chapada Diamantina - BA

Alpes Suíços – Dobramento Moderno





Montes Apalaches – Dobramento Antigo

#### Planície Amazônica



Planície Litorânea - Ceará

