CONCEITOS SOBRE PEELING FACIAL

Cursoslivres

Tipos de Peelings e Substâncias Utilizadas

Classificação dos peelings

1. Introdução

O peeling é uma técnica de esfoliação controlada da pele, cujo objetivo é promover a renovação celular, uniformizar o tom cutâneo, tratar lesões superficiais e estimular o colágeno. Dependendo do método, dos ativos utilizados e da profundidade alcançada, os peelings podem ser classificados de diferentes maneiras. Essa diversidade de técnicas permite uma abordagem personalizada e segura, desde que respeitados os limites fisiológicos da pele e as indicações corretas.

Este texto apresenta as principais classificações dos peelings, agrupando-os conforme sua natureza (físico, químico ou enzimático) e conforme sua profundidade de ação (superficial, médio ou profundo). Esses parâmetros são fundamentais para orientar o profissional ou estudante na escolha do procedimento mais adequado a cada tipo de pele e necessidade estética.

2. Tipos de Peeling

a) Peeling Físico

O peeling físico é baseado na **remoção mecânica** das camadas superficiais da pele, por meio de atrito ou abrasão. Pode ser realizado com substâncias granuladas (como cristais, microesferas, argilas) ou com aparelhos específicos, como a **microdermoa-brasão** com ponteira de diamante ou jato de óxido de alumínio.

Características principais:

- Atua na camada córnea da epiderme.
- Estimula a regeneração celular e melhora a textura da pele.
- É indicado para peles espessas, opacas, com poros dilatados e linhas finas.

Por ser mais superficial, geralmente é bem tolerado e possui baixo risco de complicações. No entanto, deve-se evitar sua aplicação em peles sensíveis, acneicas ou com lesões ativas.

b) Peeling Químico

O peeling químico utiliza **substâncias ácidas ou básicas** que provocam esfoliação da pele por meio de reações químicas, levando à destruição controlada das camadas epidérmicas ou dérmicas. Os ácidos mais utilizados incluem:

- Ácido glicólico (alfa-hidroxiácido): ação progressiva e controlada.
- Ácido salicílico (beta-hidroxiácido): lipofilico, ideal para peles oleosas e acneicas.
- Ácido mandélico: mais suave, indicado para peles sensíveis e negras.
- Ácido tricloroacético (TCA): utilizado em concentrações variáveis, podendo atingir camadas mais profundas.

O peeling químico permite resultados expressivos no tratamento de manchas, acne, rugas finas, fotoenvelhecimento e cicatrizes superficiais. No entanto, exige cautela quanto à escolha do agente, tempo de exposição e fototipo do paciente, pois o risco de hiperpigmentações ou irritações é maior se mal conduzido.

c) Peeling Enzimático

O peeling enzimático utiliza **enzimas de origem vegetal, animal ou microbiana**, como a papaína (extraída do mamão), bromelina (do abacaxi), tripsina ou queratinase, para promover a quebra das proteínas da camada córnea.

Características:

- Atua de forma seletiva sobre células mortas.
- É considerado o tipo mais suave de peeling.
- Pode ser utilizado em gestantes, lactantes e peles sensibilizadas (salvo contraindicação específica).

O peeling enzimático é uma excelente alternativa para manutenção da pele, como etapa preparatória para outros procedimentos ou para pacientes que não toleram ácidos.

3. Classificação Quanto à Profundidade

A profundidade do peeling está diretamente relacionada à **camada da pele atingida**, ao **tipo de agente utilizado** e ao **tempo de exposição**. Essa classificação é fundamental para prever os resultados e o tempo de recuperação, bem como para avaliar os riscos associados ao procedimento.

a) Peeling Superficial

- Atua na epiderme, especialmente na camada córnea.
- Pode ser físico, químico (com ácidos de baixa concentração) ou enzimático.
- Indicado para:

- Manchas leves;
- Acne grau I;
- o Opacidade da pele;
- Linhas finas iniciais.

Recuperação rápida, com leve descamação ou vermelhidão. Pode ser realizado em sessões repetidas, com intervalos curtos.

b) Peeling Médio

- Atinge a epiderme e parte da derme papilar.
- Utiliza agentes como TCA (15–35%), ácido retinoico ou combinações de ácidos.
- Indicado para:
 Rugas moderadas;
 - Melasmas resistentes;
 - o Cicatrizes superficiais de acne;
 - o Fotoenvelhecimento.

Apresenta maior descamação, eritema e necessidade de cuidados pós-procedimento mais rigorosos. O intervalo entre sessões costuma ser maior.

c) Peeling Profundo

- Alcança a derme reticular.
- Utiliza substâncias potentes como o **fenol**, com aplicação geralmente restrita ao ambiente médico.
- Indicado para:

- Rugas profundas;
- Cicatrizes marcantes;
- Danos solares severos.

Apesar dos resultados expressivos, o risco de complicações é elevado (hiperpigmentação, infecção, cicatrizes). O tempo de recuperação é longo e exige acompanhamento especializado.

4. Considerações Finais

A correta classificação dos peelings permite maior segurança e eficiência na aplicação do procedimento, além de oferecer ao paciente ou cliente expectativas realistas. O conhecimento dos **tipos de peeling (físico, químico e enzimático)**, combinado com a **profundidade atingida (superficial, médio ou profundo)**, é fundamental para a formulação de protocolos estéticos éticos e adequados ao perfil de cada pele.

Nos cursos livres, a compreensão teórica desses aspectos é indispensável para que o aluno desenvolva um senso crítico sobre os limites de sua atuação, compreenda os riscos envolvidos e saiba quando encaminhar o cliente a um profissional habilitado.

Referências Bibliográficas

- AMARAL, M. P. et al. *Estética: fundamentos e práticas*. São Paulo: Cengage Learning, 2017.
- AZEVEDO, L. H.; MENDONÇA, A. T. Cosmetologia Aplicada à Estética. São Paulo: Senac São Paulo, 2016.
- SILVA, D. C.; MELO, G. P. *Peelings e Protocolos Estéticos*. São Paulo: Estética Científica, 2020.
- CAMARGO, F. B. Jr. Dermatologia Estética: princípios, procedimentos e complicações. Rio de Janeiro: Elsevier, 2014.
- SOUSA, L. M. Peelings Químicos na Estética. São Paulo: Phorte Editora, 2011.
- ANVISA. Nota Técnica nº 1/2018 Produtos cosméticos e procedimentos estéticos profissionais. Brasília, 2018.

PRINCIPAIS ATIVOS E SUBSTÂNCIAS UTILIZADOS EM PEELINGS FACIAIS

1. Introdução

O peeling facial é uma técnica estética que promove a renovação celular da pele por meio da esfoliação controlada de suas camadas. Essa esfoliação pode ser realizada com diferentes tipos de agentes — físicos, enzimáticos ou químicos —, e a escolha dos ativos é essencial para alcançar os objetivos estéticos de forma segura, eficaz e personalizada.

Este texto aborda os principais ativos utilizados em peelings faciais, com ênfase no ácido glicólico, ácido salicílico, ácido mandélico, ácido tricloroacético (TCA), além de enzimas vegetais e esfoliantes físicos, destacando suas propriedades, mecanismos de ação, indicações e precauções.

2. Ácido Glicólico

O ácido glicólico é um **alfa-hidroxiácido (AHA)** derivado da cana-de-açúcar, conhecido por seu pequeno tamanho molecular, o que permite maior penetração na pele. Sua principal ação é **esfoliante e queratolítica**, promovendo a quebra das ligações entre os corneócitos da epiderme.

Propriedades e ação:

- Estimula a renovação celular;
- Aumenta a síntese de colágeno;
- Melhora a textura e luminosidade da pele;
- Favorece o clareamento de manchas superficiais.

Indicações:

- Hiperpigmentações;
- Linhas finas;
- Acne grau I e II;
- Fotoenvelhecimento.

Considerações:

- Concentrações entre 5% e 10% são comuns em cosméticos domiciliares.
- Concentrações entre 20% e 70% são utilizadas em protocolos profissionais, exigindo conhecimento técnico.

Precauções:

- Pode causar ardência, eritema e descamação;
- Exige fotoproteção rigorosa após o uso;
- Contraindicado em peles sensíveis ou sensibilizadas.

3. Ácido Salicílico

O ácido salicílico é um **beta-hidroxiácido (BHA)** lipofílico, derivado da casca do salgueiro branco, com afinidade por regiões oleosas da pele. Diferentemente dos AHAs, penetra nos poros e promove limpeza profunda, sendo amplamente utilizado no tratamento da acne.

Propriedades e ação:

- Esfoliante e comedolítico;
- Anti-inflamatório e antimicrobiano;

- Controla a oleosidade da pele;
- Melhora a textura cutânea.

Indicações:

- Acne inflamatória e comedogênica;
- Hiperqueratose folicular;
- Peles oleosas com poros dilatados.

Considerações:

- Comumente utilizado em concentrações de 10% a 30% em peelings profissionais;
- Seu efeito é cumulativo, podendo ser associado a outros ácidos em protocolos combinados.

Precauções:

- Não recomendado para gestantes e lactantes;
- Pode causar descamação e sensação de ressecamento;
- Evitar uso em peles sensibilizadas, com feridas ou dermatites ativas.

4. Ácido Mandélico

O ácido mandélico é um AHA derivado da **amêndoa amarga**, com molécula maior que a do ácido glicólico, o que reduz sua agressividade e torna sua penetração mais lenta. É considerado **suave e seguro para peles sensíveis e de fototipos mais altos** (IV, V e VI).

Propriedades e ação:

- Esfoliação suave e progressiva;
- Ação antibacteriana e despigmentante;
- Melhora da textura cutânea e da luminosidade;
- Indicado inclusive para peles negras e orientais.

Indicações:

- Hiperpigmentações;
- Acne leve a moderada;
- Peles sensíveis e reativas;
- Clareamento e uniformização do tom da pele.

Considerações:

- Utilizado em concentrações de 10% a 30% em protocolos estéticos;
- Boa opção para introdução ao uso de ácidos;
- Compativel com tratamentos combinados.

Precauções:

- Pode causar leve ardência inicial;
- Fotoproteção continua sendo necessária, embora o risco de hiperpigmentação seja menor.

5. Ácido Tricloroacético (TCA)

O TCA é um ácido derivado do ácido acético, com ação cáustica que promove coagulação proteica e descamação intensa. Sua aplicação é restrita a ambientes profissionais, com profundidade variada conforme a concentração (de 10% a 50%).

Propriedades e ação:

- Promove necrose controlada da epiderme e derme superficial;
- Estimula colágeno e elastina;
- Provoca intensa regeneração tecidual.

Indicações:

- Fotoenvelhecimento avançado;
- Cicatrizes atróficas;
- Rugas moderadas a profundas;
 - Melasmas resistentes (com precaução).

Considerações:

- Concentrações entre 10–20% são consideradas de uso estético (superficial);
- Acima de 30% requer conhecimento avançado e é geralmente de uso médico;
- Causa "frost" (esbranquiçamento da pele) durante o procedimento, indicando coagulação.

Precauções:

- Risco de hiperpigmentação pós-inflamatória;
- Tempo de recuperação maior;

 Rigor nos cuidados pós-procedimento, incluindo hidratação, fotoproteção e uso de cicatrizantes.

6. Enzimas Vegetais e Esfoliantes Físicos

a) Enzimas Vegetais

Utilizadas em peelings enzimáticos, essas substâncias atuam dissolvendo a queratina superficial da pele, promovendo **esfoliação suave e seletiva**, sem provocar inflamação ou agressão mecânica.

Principais enzimas:

- Papaína (do mamão);
- Bromelina (do abacaxi);
- Tripsina (de origem animal ou sintética).

Indicadas para:

- Peles sensibilizadas;
- Pré-tratamento antes de outros procedimentos;
- Manutenção da pele em gestantes ou pacientes com restrições ao uso de ácidos.

São ideais para peles finas, delicadas ou com barreira cutânea comprometida.

b) Esfoliantes Físicos

São substâncias que promovem abrasão mecânica, como:

- Microesferas vegetais (de jojoba, arroz ou sílica);
- Argilas esfoliantes;

• Pó de casca de nozes ou sementes.

Indicados para:

- Remoção de células mortas da superfície;
- Estimular microcirculação;
- Peles espessas e resistentes.

Devem ser evitados em peles sensíveis, acneicas ou com rosácea, pois o atrito pode provocar microlesões.

7. Considerações Finais

A escolha adequada dos ativos utilizados em peelings faciais deve considerar o tipo de pele, o objetivo do tratamento, a tolerância cutânea e os riscos potenciais. Os ácidos glicólico, salicílico, mandélico e TCA, bem como as enzimas vegetais e esfoliantes físicos, apresentam diferentes mecanismos de ação e níveis de agressividade, sendo imprescindível conhecer suas características para planejar protocolos personalizados e seguros.

Nos cursos livres, o estudo teórico desses ativos é essencial para compreender seus efeitos, limites e aplicações, contribuindo para a formação consciente de futuros profissionais ou interessados na estética facial.

Referências Bibliográficas

- AMARAL, M. P. et al. *Estética: fundamentos e práticas*. São Paulo: Cengage Learning, 2017.
- CAMARGO, F. B. Jr. Dermatologia Estética: princípios, procedimentos e complicações. Rio de Janeiro: Elsevier, 2014.
- SILVA, D. C.; MELO, G. P. *Peelings e Protocolos Estéticos*. São Paulo: Estética Científica, 2020.
- SOUSA, L. M. Peelings Químicos na Estética. São Paulo: Phorte Editora, 2011.
- AZEVEDO, L. H.; MENDONÇA, A. T. Cosmetologia Aplicada à Estética. São Paulo: Senac São Paulo, 2016.
- ANVISA. Nota Técnica nº 1/2018 Produtos cosméticos de uso profissional.

 Brasília, 2018.

COMO FUNCIONAM OS PEELINGS QUÍMICOS:

MECANISMOS, EFEITOS E PARÂMETROS DE USO

1. Introdução

O peeling químico é uma técnica amplamente utilizada nos tratamentos estéticos e dermatológicos para promover a renovação da pele por meio da aplicação controlada de substâncias ácidas. Sua eficácia está relacionada à profundidade que atinge na pele, ao tipo de ácido utilizado, ao pH da fórmula e ao tempo de exposição.

Diferentemente de métodos físicos ou enzimáticos, os peelings químicos atuam através de reações bioquímicas que causam a esfoliação das camadas da epiderme e, em alguns casos, da derme, estimulando a regeneração cutânea e a produção de colágeno. Este texto explicará o funcionamento dos peelings químicos, detalhando o mecanismo de ação dos ácidos, os efeitos sobre as camadas da pele e os principais parâmetros que determinam sua atuação.

2. Mecanismo de Ação dos Ácidos

Os ácidos usados nos peelings químicos exercem sua ação por meio de três mecanismos principais: queratólise, coagulação proteica e estimulação celular.

a) Queratólise

Trata-se da dissolução das ligações entre os corneócitos — células da camada córnea da epiderme. Ácidos como o glicólico e o mandélico, pertencentes ao grupo dos alfahidroxiácidos (AHAs), atuam rompendo as pontes de hidrogênio entre essas células, facilitando sua eliminação e permitindo a renovação celular.

b) Coagulação proteica

Ácidos mais potentes, como o tricloroacético (TCA) ou o fenol, causam coagulação das proteínas estruturais da epiderme e da derme (como queratina, colágeno e elastina), levando à necrose controlada dos tecidos. Esse processo desencadeia uma resposta inflamatória que estimula a regeneração profunda da pele.

c) Estímulo ao turnover epidérmico

Todos os peelings químicos, em maior ou menor grau, induzem o aumento do turnover celular — ou seja, aceleram o processo natural de renovação da pele. Isso contribui para uma pele mais fina, uniforme, luminosa e com melhor textura.

Além disso, diversos ácidos possuem **efeitos secundários específicos**, como ação sebo reguladora (ácido salicílico), despigmentante (ácido kójico) ou antibacteriana (ácido mandélico), ampliando sua aplicabilidade em tratamentos de acne, melasma e sinais de fotoenvelhecimento.

3. Efeitos na Epiderme e Derme

Os peelings químicos produzem efeitos controlados nas camadas cutâneas, conforme sua profundidade de atuação, que é determinada pela concentração da substância, seu pH, o tempo de exposição e a técnica de aplicação.

a) Efeitos na epiderme

Na epiderme, os ácidos provocam:

- Esfoliação da camada córnea, promovendo descamação visível ou invisível;
- Estimulação da proliferação de queratinócitos na camada basal;
- Redução da hiperpigmentação por meio da remoção de melanina acumulada nas camadas superiores.

Esse processo resulta em:

- Pele mais clara e luminosa;
- Redução de manchas;
- Melhora da textura e suavização de rugas finas.

b) Efeitos na derme

Peelings de média e alta profundidade, como o TCA em concentrações mais elevadas ou o fenol, atingem a derme papilar ou reticular. Nesses casos, os efeitos incluem:

- Desnaturação do colágeno existente;
- Estimulação da síntese de novo colágeno e elastina pelos fibroblastos;
- Espessamento dérmico progressivo, com melhora da flacidez e da elasticidade.

Esses efeitos são desejáveis em casos de rugas mais profundas, cicatrizes atróficas e danos solares severos. No entanto, por envolverem maior agressividade, esses peelings exigem maior tempo de recuperação e envolvem maior risco de efeitos adversos, como hiperpigmentação pós-inflamatória e infecções.

4. Tempo de Exposição e pH dos Produtos

Dois fatores determinantes para a eficácia e segurança de um peeling químico são o **tempo de exposição** do produto sobre a pele e o seu **pH**, ou seja, o grau de acidez da solução.

a) Tempo de exposição

O tempo de contato entre o ácido e a pele deve ser rigorosamente controlado para evitar lesões indesejadas. Esse tempo varia de acordo com:

- O tipo e concentração do ácido;
- O objetivo do tratamento;
- A tolerância individual da pele.

Peelings suaves, como os de ácido mandélico a 10%, podem permanecer sobre a pele por 10 a 20 minutos. Já peelings mais agressivos, como o TCA a 30%, podem requerer neutralização imediata após o aparecimento do "frost", um esbranquiçamento que indica coagulação proteica.

Em alguns protocolos, o ácido não é neutralizado imediatamente e permanece sobre a pele até sua absorção completa. Nesses casos, o produto é formulado com pH ajustado para garantir ação lenta e segura.

b) pH dos produtos

O pH influencia diretamente a **potência do ácido**. Quanto **mais baixo o pH**, **maior sua acidez e penetração** cutânea. Por isso, mesmo um ácido em baixa concentração pode ser agressivo se o pH for muito ácido (menor que 2,5).

- Produtos com pH entre 3,5 e 4,5 são considerados seguros para uso cosmético domiciliar.
- Produtos com pH entre **1,0** e **3,0** são considerados de uso profissional, exigindo domínio técnico.

Além disso, muitos ácidos são tamponados (neutralizados parcialmente) para controlar sua atividade. Isso garante uma esfoliação mais segura e previsível, especialmente em peles sensíveis.

5. Considerações Finais

Os peelings químicos são ferramentas eficazes e versáteis no tratamento estético da pele, desde que utilizados com responsabilidade e conhecimento técnico. Seu funcionamento baseia-se em mecanismos químicos que promovem a descamação, regeneração e estímulo dérmico, proporcionando benefícios como clareamento, rejuvenescimento e controle da acne.

Para um uso seguro, é essencial compreender a ação dos ácidos, seus efeitos sobre as camadas da pele e a importância de parâmetros como o tempo de exposição e o pH. No contexto dos cursos livres, esse conhecimento deve ser aplicado de forma **teórica**, respeitando os limites éticos e legais da atuação não profissional, com foco na formação educativa e preventiva.

Referências Bibliográficas

- AMARAL, M. P. et al. *Estética: fundamentos e práticas*. São Paulo: Cengage Learning, 2017.
- CAMARGO, F. B. Jr. Dermatologia Estética: princípios, procedimentos e complicações. Rio de Janeiro: Elsevier, 2014.
- SILVA, D. C.; MELO, G. P. *Peelings e Protocolos Estéticos*. São Paulo: Estética Científica, 2020.
- SOUSA, L. M. Peelings Químicos na Estética. São Paulo: Phorte Editora, 2011.
- ANVISA. Nota Técnica nº 1/2018 Produtos cosméticos de uso profissional. Brasília, 2018.
- KWON, H. H. et al. *Chemical Peels in Dermatology*. Dermatologic Therapy, v. 33, n. 2, 2020.