

REFRIGERAÇÃO

SENSAÇÃO TÉRMICA

Reação ao frio

- Quando as condições ambientais proporcionam perdas de calor do corpo além das necessárias para a manutenção de sua temperatura interna constante, o organismo reage por meio de seus mecanismos, para reduzir as perdas e aumentar as combustões internas.
- A redução de trocas térmicas entre o indivíduo e o ambiente se faz através do aumento da resistência térmica da pele por meio de vasoconstrição e arrepio.

Reação ao calor

- Quando as perdas de calor são inferiores às necessárias para a manutenção de sua temperatura interna constante, o organismo reage por meio de seus mecanismos termo-reguladores, proporcionando condições de trocas de calor mais intensa entre o organismo e o ambiente.
- o O incremento das perdas de calor para o ambiente se faz por meio da vasodilatação e da exsudação (suor).

PARÂMETROS DE SENSAÇÕES TÉRMICAS

Individuais

Metabolismo

Processo dos organismos vivos por onde substâncias são transformadas nos tecidos com uma mudança no gasto energético. A quantia total de calor metabólico produzido depende do ambiente externo e também da dieta, tamanho corporal, idade e nível de atividade destes.

Vestuário

Resistência térmica interposta entre o corpo e o meio ambiente e, também, à permeabilidade ao vapor d'água.

Parâmetros de sensações térmicas

- Ambientais
 - Temperatura do ar
 - A temperatura do ar afeta a perda de calor convectivo do corpo humano e a temperatura do ar expirado.
 - Umidade do ar
 - Influencia nos mecanismos de perda de calor. a difusão de vapor d'água através da pele (transpiração imperceptível), a evaporação do suor da pele e a umidificação do ar respirado.

Parâmetros de sensações térmicas

Ambientais

- Velocidade do vento
 - É determinante na troca de calor por convecção entre o corpo e meio ambiente. Quanto mais intensa for a ventilação, maior será a quantidade de calor trocada entre o corpo humano e o ar, e menor será a sensação de calor.

Temperatura média radiante

• Corresponde à temperatura média das superfícies opacas visíveis que participam no balanço radiativo com a superfície exterior do vestuário.

ÍNDICES

Biofísicos

• baseiam-se nas trocas de calor entre o corpo e o ambiente, correlacionando os elementos do conforto com as trocas de calor que dão origem a esses elementos;

Fisiológicos

• baseiam-se nas reações fisiológicas originadas por condições conhecidas de temperatura seca do ar, temperatura radiante média, umidade do ar e velocidade do vento;

Subjetivos

• baseiam-se nas sensações subjetivas de conforto experimentadas em condições em que os elementos de conforto térmico variam.

CONDICIONAMENTO TÉRMICO

- Orientação da edificação
- Direção de ventos dominantes
- Isolamento térmico
- Cor e textura dos acabamentos externos

RECURSOS COMPLEMENTARES DE CONDICIONAMENTO TÉRMICO

Ar condicionado

- Acopla necessidades de resfriamento que seguem desde a temperatura ambiental externa até condições de exposição a poluição sonora.
- Expansão direta: aqueles em que o gás refrigerante é o responsável pelo resfriamento do ar injetado no ambiente, como nos equipamentos do tipo split e os de janela.
- Expansão indireta: aqueles em que o gás refrigerante resfria a água que circula pelo sistema, sendo esta a responsável pelo resfriamento do ar. Esse é o funcionamento das centrais de água gelada.

MEDIÇÕES

• BTU – Unidade Térmica Britânica

Determina potência de refrigeração relacionada ao produto e deve se adequar à condição e necessidade de cada edificação.

- Cômodos unicos residenciais comportam até 22.000 btu.
- Sistema de refrigeração para dois ou três locais, de 22.000 a 50.000 btu.
- Sistemas comerciais elevados, de 50.000 a 90.000 btu

COMO PENSAR EM RESFRIAMENTO

- Necessidade local
- Perda sonora ou térmica para o ambiente externo
 - Altura do pé direito
 - Kcal/hora

CALCULE AS QUILOCALORIAS

1) RECINTO			2) JANELAS						3) PESSOAS		4) PORTAS		5) Aparelhos elétricos	
M ²	kcal/hora		m²	kcal/hora								-		
	Entre	Sob		c/cortina		s/cortina		Vidros	Quant.	kcal/h	m²	kcal/h	Watts nomi- nal	kcal/h
	Anda- res	Telha- do		Sol Manhā	Sol Tarde	Sol Manhā	Sol Tarde	na Sombra					riai	
30	480	670	1	160	212	222	410	37	1	125	1	125	50	45
33	530	740	2	320	424	444	820	74	2	250	2	250	100	90
36	580	800	3	480	636	666	1 230	110	3	375	3	375	150	135
39	620	870	4	640	848	888	1 640	148	4	500	4	500	200	180
42	670	940	5	800	1 060	1 110	2 050	185	5	625	5	625	250	225
45	720	1 000	6	960	1 272	1 332	2 460	222	6	750	6	750	300	270
48	770	1 070	7	1 120	1 484	1 554	2 870	260	7	875	7	875	350	315
51	816	1 140	- 8	1 280	1 696	1 777	3 280	295	8	1 000	8	1 000	400	360
54	864	1 200	9	1 440	1 908	1 998	3 960	330	9	1 125	9	1 125	450	405
57	910	1 270	10	1 600	2 120	2 220	4 100	370	10	1 250	10	1 250	500	450
60	960	1 340	76	NAME OF STREET		ROLL I				300				
63	1 010	1 410		RESULTADO DO LEVANTAMENTO										
66	1.060	1.470												

A tabela ao lado possibilita um cálculo bem aproximado do número de quilocalorias/hora necessário para a refrigeração ou aquecimento de um recinto. Para calcular, determine:

- 1 o volume da sala;
- 2 a superfície de janelas e portas;

1 100

1 150

1 200

1 250

1 300

1 340

1 390

1 440

69

72

75

78

81

84

87

1 540

1 610

1 680

1 740

1 810

1 880

1 940

2 010

- 3 o número de pessoas que ocupa constantemente o recinto;
- 4 o número de watts de outros aparelhos elétricos que existam no local.

A cada valor encontrado nesses quatro itens corresponde um número de kcal/h, na tabela. A soma dêsses valôres indica a capacidade que deve ter o aparelho.

	Total	kcal/h
5)	Aparelhos elétricos:	**
4)	Portas:	#7
3)	Pessoas:	**
2)	Janelas:	"
1)	Recinto: k	cal/h

EXEMPLO

- Uma sala de aula com 38 m² e pé direito de 3 metros. Com duas janelas de 2 m² cada. Comporta 32 alunos e 1 professor. Uma porta de 2 m². Uso de 7 lâmpadas de 40 w, cada.
 - Na sala $-38 \text{ m}^2 \times 3 \text{ m} = 114 \text{ m}^3 \rightarrow \text{Na tabela } 2.546 \text{ kcal/h}$
 - Janelas 2 m² x 2 = 4 m² \rightarrow Na tabela 1.640 kcal/h
 - Pessoas 33 pessoas → Na tabela **4.125 kcal/h**
 - Elétricos 7 lâmpadas → Na tabela 315 kcal/h

• Total = 8.876 kcal/h (Carga térmica)

EXEMPLO

• Transformar Kcal em BTU

• 1 kcal = 3,92 BTU

8.876 kcal x 3,92 BTU

35.000 BTU

RESFRIAMENTO DIFERENCIADO

- Lagos, espelhos d'água e áreas verdes próximas das edificações
 - Utilização de áreas de cobertura para modificação da variação do resfriamento da edificação através da convecção externa do ar.
- Áreas externas de sombreamento
 - Utilização de estratégias para minimizar a radiação direta incidente