BÁSICO EM RESINA COMPOSTA NA ODONTOLOGIA

Técnica Operatória e Manuseio Clínico

Indicações e Contraindicações Clínicas

Cavidades Classe I a V e Lesões Cervicais Não Cariosas

1. Introdução

As resinas compostas representam atualmente o principal material restaurador direto utilizado na odontologia contemporânea. A evolução da sua composição, associada às técnicas adesivas modernas, permite sua aplicação em múltiplas situações clínicas, com previsibilidade, estética e desempenho funcional satisfatórios. Entretanto, seu uso deve ser guiado por critérios técnicos bem definidos, que envolvem o tipo e extensão da lesão, localização da cavidade, fatores oclusais e condições do meio bucal. Este texto explora as principais indicações e contraindicações clínicas das resinas compostas, com ênfase nas cavidades classe I a V e nas lesões cervicais não cariosas.

2. Indicações Clínicas

As resinas compostas são indicadas sempre que se deseja uma restauração estética, conservadora e adesiva, respeitando os princípios da odontologia minimamente invasiva. As indicações incluem, mas não se limitam a:

2.1 Cavidades Classe I

Envolvem sulcos e fóssulas de dentes posteriores. As resinas são indicadas em casos de pequenas a médias cavidades, especialmente quando o controle de umidade é possível. A técnica adesiva permite restaurações com vedamento marginal eficiente e boa estética, mesmo em áreas não visíveis.

2.2 Cavidades Classe II

Referem-se a áreas proximais de pré-molares e molares. São indicadas para cavidades pequenas ou moderadas, em pacientes com bom controle de placa e sem carga oclusal excessiva. As resinas compostas permitem restaurações com melhor preservação da estrutura dental e adaptação ao contato proximal, quando inseridas com técnica adequada (matrizes seccionais, cunhas, etc.). rsos

2.3 Cavidades Classe III

Localizam-se em superfícies proximais de dentes anteriores, sem envolvimento do ângulo incisal. As resinas compostas são altamente indicadas, dada a sua capacidade de mimetizar a cor dental e permitir restaurações invisíveis. A adesão é geralmente excelente no esmalte anterior, especialmente com condicionamento ácido total.

2.4 Cavidades Classe IV

Compreendem superfícies proximais com comprometimento do ângulo incisal. Exigem materiais com boa resistência mecânica e alta estética. A resina composta é o material de eleição quando há possibilidade de escultura anatômica e estratificação com diferentes opacidades, visando naturalidade e durabilidade.

2.5 Cavidades Classe V

Situam-se no **terço cervical vestibular ou lingual** de dentes anteriores e posteriores. As resinas compostas apresentam excelente desempenho nesses casos, especialmente quando há esmalte suficiente para ancoragem. São indicadas tanto em lesões cariosas quanto em **lesões cervicais não cariosas** (LCNC), como as de origem abrasiva, erosiva ou abfrativa.

2.6 Lesões Cervicais Não Cariosas (LCNC)

As LCNC são defeitos estruturais que ocorrem na região cervical do dente sem envolvimento de processo infeccioso. As principais causas incluem:

- Abrasão: escovação agressiva com dentifrícios abrasivos;
- Erosão: exposição ácida (intrínseca ou extrínseca);
- Abfração: tensões oclusais concentradas que causam microfraturas cervicais.

A restauração dessas lesões com resina composta é indicada nos seguintes casos:

- Dentinossensibilidade intensa;
- Comprometimento estético;
- Progressão da lesão;
- Risco de fratura da coroa clínica.

O sucesso depende do correto preparo da superfície, uso de sistemas adesivos compatíveis com dentina esclerótica e isolamento adequado.

3. Contraindicações Clínicas

Apesar de sua versatilidade, as resinas compostas apresentam limitações. As **principais contraindicações** incluem:

3.1 Dificuldade no Controle de Umidade

A adesão da resina composta depende diretamente da **manutenção do campo seco**. Em regiões subgengivais, onde o isolamento absoluto é impraticável, o risco de falha adesiva aumenta, comprometendo o selamento e a longevidade da restauração.

3.2 Cavidades Extensas em Dentes Posteriores

Grandes perdas estruturais que envolvem cúspides ou múltiplas faces podem exceder a resistência da resina, levando à fratura do material ou do dente. Nestes casos, restaurações indiretas (como onlays cerâmicos ou metálicos) ou o uso de materiais mais resistentes podem ser preferíveis.

3.3 Bruxismo ou Carga Oclusal Excessiva

Pacientes com hábitos parafuncionais apresentam maior risco de **desgaste**, **fratura ou delaminação** das resinas compostas. Nesses casos, o uso de resina pode ser contraindicado ou necessitar de planejamento associado a contenções oclusais.

3.4 Falta de Colaboração do Paciente

O sucesso clínico depende da colaboração do paciente para manter higiene oral, controlar dieta e comparecer a consultas periódicas. Em indivíduos não colaborativos, há maior risco de recorrência de cárie, infiltração e falha precoce da restauração.

4. Considerações Clínicas Complementares

Além das indicações e contraindicações, é importante considerar:

- Longevidade: estudos mostram que restaurações em resina podem durar mais de 10 anos, especialmente em cavidades pequenas e com boa técnica operatória.
- Estética: a possibilidade de estratificação com diferentes opacidades (dentina, esmalte, efeito) permite resultados altamente naturais.
- Biocompatibilidade: quando bem polimerizadas e manipuladas adequadamente, as resinas compostas são seguras e não provocam efeitos adversos significativos.

A escolha adequada do tipo de resina (microhíbrida, nanoparticulada, flow, bulk-fill), associada à técnica adesiva apropriada, é essencial para o sucesso clínico em qualquer classe cavitária.

5. Considerações Finais

As resinas compostas, quando bem indicadas e aplicadas com rigor técnico, oferecem resultados clínicos excelentes em cavidades de classes I a V e em lesões cervicais não cariosas. Sua adesividade, estética e versatilidade tornaram-nas indispensáveis na prática clínica moderna. Entretanto, devem ser evitadas em situações de controle de umidade deficiente, cavidades muito extensas ou pacientes com bruxismo severo. O conhecimento das **indicações e limitações** desses materiais é essencial para garantir longevidade, funcionalidade e satisfação estética nas restaurações diretas.

Referências Bibliográficas

- ANUSAVICE, K. J.; SHEN, C.; RAWLS, H. R. Phillips Materiais
 Dentários. 12. ed. Rio de Janeiro: Elsevier, 2013.
- SUMMITT, J. B. et al. Fundamentos de Odontologia Restauradora.
 3. ed. Rio de Janeiro: Santos, 2007.
- OPDAM, N. J. M. et al. Longevity of posterior composite restorations: A systematic review. *Journal of Dental Research*, v. 93, n. 10, p. 943–949, 2014.
- HICKEL, R. et al. Criteria for the clinical evaluation of direct and indirect restorations. *Clinical Oral Investigations*, v. 14, p. 349–366, 2010.
- BRANNSTROM, M. The cause of postrestorative sensitivity and its prevention. *Journal of Endodontics*, v. 2, n. 5, p. 184–189, 1976.

Restaurações Estéticas em Dentes Anteriores e Situações de Contraindicação ao Uso de Resina Composta

1. Introdução

A busca por tratamentos odontológicos com excelência estética tem crescido substancialmente, refletindo a valorização da aparência e da harmonia do sorriso na sociedade contemporânea. Nesse cenário, as **resinas compostas** tornaram-se o principal material restaurador direto para dentes anteriores, graças à sua capacidade de mimetizar a estrutura dental, restaurar forma e função com mínima remoção de estrutura sadia, e proporcionar resultados imediatos.

Apesar de suas vantagens, a indicação da resina composta exige critérios clínicos bem definidos. Em determinadas situações, o uso desse material pode ser **limitado ou até contraindicado**, exigindo a adoção de outras abordagens restauradoras, como as restaurações indiretas em cerâmica. Este texto aborda as aplicações estéticas da resina composta em dentes anteriores e apresenta os principais cenários clínicos em que seu uso deve ser evitado.

2. Restaurações Estéticas em Dentes Anteriores

2.1 Indicações Clínicas

A utilização de resinas compostas em dentes anteriores é indicada em diversas situações clínicas:

- Fraturas coronárias (trauma dentário);
- Cavidades classe III e IV;
- Fechamento de diastemas;
- Melhorias na forma, cor ou tamanho dental (cosmética);
- Defeitos de desenvolvimento do esmalte (como hipoplasias ou fluorose);
 - Desgastes por bruxismo ou erosão;
 - Facetas diretas de resina composta.

A capacidade de **estratificação com diferentes opacidades** (dentina, esmalte, translúcido), associada à escultura manual e ao polimento final, permite alcançar resultados extremamente naturais. A adesão ao esmalte, em particular, é estável e duradoura quando a técnica operatória é bem executada.

2.2 Vantagens das Restaurações Diretas

- Preservação máxima da estrutura dental;
- Resultados imediatos e reversíveis;
- Custo mais acessível que restaurações indiretas;
- Possibilidade de manutenção e reparo direto em consultório.

Essas vantagens fazem das resinas compostas a primeira escolha para intervenções estéticas conservadoras, especialmente em pacientes jovens ou em situações de caráter transitório.

3. Fatores Determinantes para o Sucesso Estético

O êxito das restaurações anteriores em resina composta depende da **habilidade do profissional** e da **qualidade do material utilizado**. Entre os fatores críticos estão:

- Escolha correta da cor e translucidez;
- Técnica de estratificação adequada;
- Uso de matrizes e moldadores cervicais;
- Correta **fotopolimerização** em camadas finas;

 Finalização com lixamento e polimento progressivos, para brilho e longevidade estética.

Além disso, o paciente deve ser instruído sobre cuidados com a dieta, higiene e hábitos que influenciam diretamente na manutenção da cor e integridade da restauração.

4. Quando Evitar o Uso de Resina Composta

Apesar das vantagens, há contextos clínicos em que o uso de resina composta **não é a melhor alternativa**. A seguir, são apresentados os principais fatores de **contraindicação relativa ou absoluta**:

4.1 Extensas Perdas Estruturais

Em casos de perda extensa de estrutura coronária, especialmente quando mais de 50% do tecido dental está ausente ou há comprometimento de bordo incisal e ângulos proximais, a resina composta pode não oferecer resistência mecânica suficiente. Nestes casos, restaurações indiretas (como facetas ou fragmentos cerâmicos) proporcionam melhor longevidade e estética previsível.

4.2 Alterações Severas de Cor

Quando há dentes com escurecimento intrínseco acentuado (por exemplo, por tratamento endodôntico ou manchas de tetraciclina), a **resina pode não mascarar adequadamente** a cor de fundo. Embora exista a possibilidade de usar opacificadores ou resinas de alta opacidade, o resultado estético pode ser limitado. Restaurações cerâmicas, por outro lado, permitem controle superior da opacidade e da cor final.

4.3 Bruxismo e Hiperfunção Muscular

Pacientes com **bruxismo severo** ou histórico de fraturas restauradoras apresentam risco aumentado de **desgaste**, **lascamento ou fratura** das resinas. Nestes casos, além de considerar materiais mais resistentes (como cerâmicas reforçadas), o tratamento deve incluir controle oclusal e uso de placas miorrelaxantes.

4.4 Dificuldade de Isolamento

A técnica adesiva requer um campo seco absoluto. Em casos de **limitações** anatômicas ou comportamentais (por exemplo, pacientes com sangramento gengival persistente, saliva abundante ou dificuldade de colaboração), o isolamento torna-se comprometido, e a adesão pode falhar. Nestes casos, o uso de materiais menos sensíveis à umidade ou técnicas indiretas pode ser preferível.

4.5 Expectativas Estéticas Exageradas

Pacientes com expectativas **muito elevadas e inflexíveis** quanto ao resultado estético podem se frustrar com as pequenas alterações de cor, brilho ou textura que a resina sofre ao longo do tempo. Para esses casos, as cerâmicas oferecem maior **estabilidade óptica e longevidade estética**, sendo mais indicadas.

5. Considerações Finais

As restaurações estéticas em dentes anteriores com resina composta são uma alternativa segura, conservadora e acessível para uma ampla variedade de situações clínicas. Quando bem indicadas e executadas, proporcionam excelente mimetismo, função e satisfação estética ao paciente. No entanto, o uso indiscriminado deve ser evitado, especialmente em casos de perda extensa de estrutura, hipersolicitação oclusal, dificuldades operatórias e alterações cromáticas severas.

O cirurgião-dentista deve considerar todos os fatores clínicos e pessoais do paciente, para **indicar o material mais apropriado**, equilibrando estética, função, durabilidade e previsibilidade. A correta indicação continua sendo a chave para o sucesso restaurador a longo prazo.

Referências Bibliográficas

- ANUSAVICE, K. J.; SHEN, C.; RAWLS, H. R. Phillips Materiais
 Dentários. 12. ed. Rio de Janeiro: Elsevier, 2013.
- OPDAM, N. J. M. et al. Longevity of anterior composite restorations: a systematic review. *Journal of Dentistry*, v. 35, p. 643–649, 2007.
- SUMMITT, J. B. et al. Fundamentos de Odontologia Restauradora.
 3. ed. Rio de Janeiro: Santos, 2007.
- DEMARCO, F. F. et al. Factors influencing the longevity of anterior composite restorations. *Journal of Dentistry*, v. 43, n. 12, p. 1395–1402, 2015.
- HEINTZE, S. D.; RÜTZEL, H. Long-term clinical performance of direct anterior restorations—a systematic review. *Dental Materials*, v. 36, n. 6, p. 594–607, 2020.

Técnicas de Adesão e Isolamento: Princípios da Adesão ao Esmalte e à Dentina

1. Introdução

A introdução da **odontologia adesiva** representou um dos marcos mais importantes da odontologia restauradora moderna, permitindo tratamentos conservadores, seguros e estéticos. A capacidade de aderir materiais restauradores diretamente à estrutura dental — esmalte e dentina — abriu caminho para a substituição de técnicas invasivas, antes baseadas em retenções mecânicas extensas. Com o avanço dos **sistemas adesivos**, tornou-se possível realizar restaurações duráveis com mínima remoção de estrutura dentária sadia.

Contudo, a eficácia da adesão depende de uma série de fatores, incluindo a correta aplicação da técnica adesiva, o comportamento biológico do substrato (especialmente da dentina), e a **qualidade do isolamento do campo operatório**, essencial para o sucesso clínico. Este texto discute os princípios da adesão ao esmalte e à dentina, bem como as estratégias de isolamento mais indicadas na prática restauradora com resinas compostas.

2. Princípios da Adesão ao Esmalte

O **esmalte dental** é um tecido altamente mineralizado, composto por aproximadamente 96% de minerais (principalmente hidroxiapatita), com estrutura prismática organizada. Essa composição confere ao esmalte excelentes propriedades de adesão micromecânica quando adequadamente condicionado.

2.1 Condicionamento Ácido

O condicionamento com ácido fosfórico a 35–37% é o padrão-ouro na preparação do esmalte para adesão. O ácido remove uma fina camada da superfície e cria uma micro retenção prismática, aumentando a energia superfícial e favorecendo a penetração dos monômeros adesivos. O padrão de ataque ácido depende da orientação dos prismas e da homogeneidade da superfície.

A adesão ao esmalte é altamente previsível, especialmente quando há uma espessura suficiente do tecido e ausência de contaminação por saliva ou fluido gengival. A técnica do "etch-and-rinse" (condicionar, lavar e secar) permanece a mais eficaz para esmalte.

3. Princípios da Adesão à Dentina

A **dentina** é um tecido menos mineralizado e mais complexo que o esmalte. Contém cerca de 70% de hidroxiapatita, 20% de material orgânico (colágeno tipo I) e 10% de água. Sua estrutura tubular, rica em fluido dentinário, representa um desafío à adesão.

3.1 Camada Híbrida

A adesão à dentina ocorre por meio da formação da **camada híbrida**, uma zona de transição onde o monômero adesivo infiltra-se na matriz colágena exposta após o condicionamento ácido. Essa camada, quando bem formada, estabelece retenção micromecânica e sela os túbulos dentinários.

Entretanto, a **hidratação da dentina**, a presença da **camada de smear layer**, a profundidade da dentina e o grau de exposição tubular afetam a qualidade da adesão. O controle da umidade é essencial para manter a integridade da rede colágena e permitir sua impregnação pelo adesivo.

3.2 Sistemas Adesivos

Os sistemas adesivos podem ser classificados em:

- Convencionais ou de três passos (etch-and-rinse):
 condicionamento com ácido fosfórico, seguido por primer e adesivo.
 São os mais estáveis ao longo do tempo, especialmente em dentina.
- De dois passos (autocondicionantes ou autocondensantes):
 combinam primer e adesivo em um único frasco, mantendo a smear layer parcialmente intacta. São mais rápidos e reduzem sensibilidade técnica, porém podem ter menor capacidade de adesão ao esmalte.
- Adesivos universais: permitem uso tanto com condicionamento total (etch-and-rinse) quanto seletivo ou autocondicionante. Têm ganhado espaço pela versatilidade clínica.

A escolha do sistema adesivo deve considerar o tipo de substrato (esmalte ou dentina), o controle de umidade, a profundidade da cavidade e a habilidade do operador.

4. Técnicas de Isolamento

O isolamento do campo operatório é um pré-requisito fundamental para o sucesso da adesão. A **contaminação por saliva, sangue ou fluido crevicular** compromete a interação dos sistemas adesivos com os tecidos dentários, reduzindo a eficácia da ligação e favorecendo a microinfiltração.

4.1 Isolamento Absoluto

O isolamento absoluto com dique de borracha é considerado o padrão ideal. Proporciona controle completo da umidade, melhora a visibilidade e protege os tecidos moles. Além disso, reduz o risco de ingestão acidental de instrumentos ou materiais. Sua utilização é fortemente recomendada em restaurações com resina composta, tanto anteriores quanto posteriores.

Apesar de ser considerado mais trabalhoso, o dique de borracha apresenta vantagens clínicas incontestáveis. Em situações em que seu uso é inviável, o profissional deve recorrer a estratégias alternativas.

4.2 Isolamento Relativo

Quando o isolamento absoluto não é possível (por questões anatômicas ou comportamentais), o **isolamento relativo** pode ser adotado. Esse tipo de isolamento utiliza roletes de algodão, sugadores e afastadores labiais ou linguais para reduzir a umidade. Contudo, não oferece a mesma eficácia do dique e deve ser usado com cautela, especialmente em procedimentos adesivos profundos ou próximos à gengiva.

5. Considerações Finais

A adesão aos tecidos dentários é um processo que combina princípios químicos, físicos e biológicos. Enquanto o esmalte permite uma adesão previsível e duradoura, a dentina exige maior atenção técnica, devido à sua complexidade estrutural e susceptibilidade à contaminação.

A correta seleção do sistema adesivo, a atenção à hidratação controlada da dentina e o uso de técnicas eficazes de isolamento são aspectos críticos para o sucesso clínico das restaurações adesivas. O domínio desses princípios capacita o cirurgião-dentista a realizar procedimentos restauradores duráveis, estéticos e seguros.

Referências Bibliográficas

- ANUSAVICE, K. J.; SHEN, C.; RAWLS, H. R. Phillips Materiais
 Dentários. 12. ed. Rio de Janeiro: Elsevier, 2013.
- SUMMITT, J. B. et al. Fundamentos de Odontologia Restauradora.
 3. ed. Rio de Janeiro: Santos, 2007.
- VAN MEERBEEK, B. et al. Adhesion to enamel and dentin: current status and future challenges. *Operative Dentistry*, v. 28, n. 3, p. 215–235, 2003.
- PERDIGÃO, J. Dentin bonding—variables related to the clinical situation and the substrate treatment. *Dental Materials*, v. 26, n. 2, p. e24–e37, 2010.
- HEINTZE, S. D.; RÜTZEL, H. Clinical effectiveness of direct anterior restorations—a systematic review. *Dental Materials*, v. 36, n. 6, p. 595–607, 2020.

Ácido Fosfórico, Sistemas Adesivos e Técnicas de Isolamento no Contexto da Odontologia Restauradora

1. Introdução

A evolução da odontologia restauradora está diretamente ligada ao desenvolvimento de materiais e técnicas que priorizem a adesão efetiva dos materiais restauradores às estruturas dentárias. Nesse contexto, o uso de ácido fosfórico e de sistemas adesivos modernos tem permitido restaurações cada vez mais conservadoras, duráveis e estéticas. Paralelamente, a efetividade desses procedimentos está condicionada à adequada técnica de isolamento do campo operatório, sendo o isolamento absoluto com dique de borracha considerado o padrão ideal. Este texto aborda os princípios de atuação do ácido fosfórico, os sistemas adesivos mais utilizados (convencional e autocondicionante), e as técnicas de isolamento absoluto e relativo aplicadas na prática clínica.

2. Ácido Fosfórico: Papel no Condicionamento Dentário

O ácido ortofosfórico a 35% ou 37% é amplamente utilizado no condicionamento dentário, promovendo modificações morfológicas superficiais no esmalte e na dentina. No esmalte, ele remove parcialmente a camada mineralizada e cria microporosidades, aumentando a energia superficial e permitindo a penetração dos monômeros adesivos. O ataque ácido ao esmalte é confiável e duradouro, favorecendo a adesão micromecânica.

Na dentina, o ácido remove a **smear layer** e desmineraliza parcialmente a matriz superficial, expondo fibras colágenas. Essa exposição possibilita a formação da **camada híbrida**, essencial para a retenção do material restaurador. No entanto, o tempo de aplicação do ácido sobre a dentina deve ser mais curto (aproximadamente 15 segundos), para evitar a desmineralização excessiva e a colapsagem da rede colágena, o que prejudica a infiltração dos adesivos.

3. Sistemas Adesivos: Convencionais e Autocondicionantes

O avanço dos sistemas adesivos é um dos pilares da odontologia adesiva. Eles são classificados, de modo geral, segundo a forma como interagem com a smear layer e o número de passos clínicos necessários.

3.1 Sistema Convencional (Etch-and-Rinse)

O sistema convencional envolve **três etapas principais**: condicionamento com ácido fosfórico, aplicação do primer e aplicação do adesivo. Após o ataque ácido, a superfície é lavada e levemente seca, mantendo-se a dentina úmida (técnica de umidade controlada), seguida da aplicação do primer hidrofílico e do adesivo.

Este sistema é considerado o **padrão-ouro em adesão ao esmalte**, uma vez que o condicionamento ácido proporciona uma micro retenção eficaz. Na dentina, porém, exige maior habilidade do operador, devido à sensibilidade da técnica ao controle da umidade e ao risco de colapsamento da rede colágena. Ainda assim, é o sistema que apresenta os **resultados mais estáveis a longo prazo**, especialmente em substratos dentinários saudáveis.

3.2 Sistema Autocondicionante

Os sistemas autocondicionantes dispensam o uso do ácido fosfórico como etapa isolada, pois já contêm agentes ácidos em sua formulação. Esses sistemas podem ser aplicados em dois passos (primer + adesivo) ou em passo único (sistemas "all-in-one").

Seu principal benefício é a **simplicidade da aplicação**, com menor sensibilidade técnica. Como a smear layer não é completamente removida, mas parcialmente modificada e integrada ao adesivo, há menor risco de sensibilidade pós-operatória.

Apesar dessas vantagens, os sistemas autocondicionantes têm **menor** capacidade de desmineralizar o esmalte, o que pode comprometer a adesão nesta estrutura. Por isso, recomenda-se, em muitos casos, o condicionamento seletivo do esmalte com ácido fosfórico, seguido da aplicação do sistema autocondicionante na dentina.

4. Técnicas de Isolamento: Absoluto e Relativo

A eficácia dos sistemas adesivos, independentemente do tipo, depende criticamente da **ausência de contaminação** durante a aplicação. A umidade, o sangue, o fluido crevicular e a saliva são inimigos da adesão, afetando diretamente a penetração e a polimerização dos monômeros.

4.1 Isolamento Absoluto (Dique de Borracha)

O isolamento absoluto é realizado com **dique de borracha**, grampos, arco metálico e perfurações individualizadas. Esta técnica oferece **controle total da umidade**, melhora a visibilidade, facilita a aplicação de sistemas adesivos e promove maior segurança operatória.

Entre as vantagens estão:

- Redução do risco de contaminação do campo operatório;
- Prevenção da aspiração ou deglutição de instrumentos;
- Conforto para o operador e segurança para o paciente;
- Estabilidade da gengiva marginal por retração mecânica.

O uso do dique de borracha é especialmente recomendado em procedimentos restauradores com resina composta, cimentações adesivas, endodontia e clareamento interno. Sua adoção deve ser estimulada desde a graduação como parte integrante da boa prática clínica.

4.2 Isolamento Relativo

O isolamento relativo é realizado com **roletes de algodão**, sugadores e afastadores labiais. Embora não ofereça as mesmas garantias do dique de borracha, pode ser eficaz em situações menos exigentes, como restaurações provisórias, procedimentos em dentes decíduos ou quando o dique é contraindicado.

Suas desvantagens incluem:

- Maior risco de contaminação por saliva ou sangue;
- Menor controle da umidade;
- Dificuldade em procedimentos próximos à gengiva.

Sempre que possível, o isolamento absoluto deve ser a escolha padrão. O isolamento relativo deve ser adotado apenas em situações clínicas onde o uso do dique é impraticável ou contraindicado.

5. Considerações Finais

A adesão efetiva dos materiais restauradores depende de três pilares fundamentais: o condicionamento adequado das superfícies dentárias, o uso correto do sistema adesivo e a manutenção de um campo operatório seco e limpo. O ácido fosfórico continua sendo o agente condicionador mais confiável, especialmente para o esmalte. A escolha entre sistema convencional ou autocondicionante deve considerar o substrato envolvido e a experiência clínica do operador.

O isolamento, por sua vez, é uma etapa que não deve ser negligenciada. O uso do **dique de borracha** deve ser encarado como um padrão de excelência clínica, e não como um obstáculo. A correta integração dessas etapas permite restaurar dentes com previsibilidade, longevidade e respeito às estruturas biológicas.

Referências Bibliográficas

- ANUSAVICE, K. J.; SHEN, C.; RAWLS, H. R. *Phillips Materiais Dentários*. 12. ed. Rio de Janeiro: Elsevier, 2013.
- PERDIGÃO, J. Dentin bonding—variables related to the clinical situation and the substrate treatment. *Dental Materials*, v. 26, n. 2, p. e24–e37, 2010.
- VAN MEERBEEK, B. et al. Buonocore Memorial Lecture. Adhesion to enamel and dentin: current status and future challenges. *Operative Dentistry*, v. 28, n. 3, p. 215–235, 2003.
- SUMMITT, J. B. et al. Fundamentos de Odontologia Restauradora.
 3. ed. Rio de Janeiro: Santos, 2007.
- HEMMINGS, K. W. et al. Use of rubber dam and its association with clinical success of adhesive restorations. *British Dental Journal*, v. 203, p. 146–148, 2007.

Técnica Incremental e Fotopolimerização em Restaurações com Resina Composta

1. Introdução

O uso da resina composta na odontologia restauradora exige não apenas a escolha de materiais de qualidade, mas também a adoção de técnicas operatórias específicas para garantir o desempenho clínico adequado. Entre essas técnicas, a aplicação incremental e a fotopolimerização eficaz são fundamentais para controlar a contração de polimerização, assegurar a adesão adequada ao substrato dental e obter a estabilidade estética e funcional da restauração.

A correta manipulação da resina, associada à escolha apropriada do equipamento fotopolimerizador e ao controle do tempo e da intensidade de luz, está diretamente relacionada à longevidade clínica das restaurações. Este texto discute esses aspectos técnicos essenciais para a prática clínica com resinas compostas.

2. Aplicação em Incrementos: Controle da Contração de Polimerização

A contração de polimerização é um fenômeno inevitável nas resinas compostas, resultante da aproximação das moléculas de monômero durante a formação das cadeias poliméricas. Essa contração pode gerar tensões internas capazes de comprometer a interface adesiva, provocando infiltrações, fendas marginais, sensibilidade pós-operatória e falhas precoces.

A técnica incremental é uma estratégia destinada a **minimizar os efeitos deletérios da contração**, reduzindo o volume total de material polimerizado por vez e permitindo melhor controle da adaptação do material às paredes cavitárias.

2.1 Vantagens da Técnica Incremental

- Redução da tensão de polimerização por diminuir a massa do material em cada cura;
- Melhor adaptação marginal e diminuição do risco de gaps;
- Maior profundidade de polimerização devido à melhor penetração da luz em camadas delgadas;
- Possibilidade de escultura anatômica progressiva, facilitando o acabamento e polimento.

A técnica tradicional consiste na aplicação de camadas com espessura máxima de **2 mm**, respeitando o limite de penetração da luz e assegurando a conversão adequada dos monômeros. Podem ser utilizados incrementos horizontais, oblíquos ou em forma de cunha, de acordo com a anatomia da cavidade.

3. Tipos de Luz de Fotopolimerização

A **fotopolimerização** é o processo de ativação da reação de cura da resina por meio de radiação luminosa. O equipamento utilizado, denominado **fotopolimerizador**, emite luz em comprimentos de onda específicos para ativar os iniciadores presentes na resina composta (geralmente a canforoquinona).

3.1 Tipos Principais ISOS

- Halógena de quartzo-tungstênio (QTH): foi o tipo mais utilizado no passado. Apresenta amplo espectro de emissão, mas menor eficiência energética, gerando calor e exigindo maior tempo de cura.
- LED (Diodo Emissor de Luz): atualmente, é o padrão na maioria das clínicas. Apresenta emissão concentrada em torno de 450–470 nm, com alta eficiência, baixa geração de calor e tempo reduzido de exposição. Existem LEDs monowave e polywave, sendo os últimos indicados para resinas que utilizam fotoiniciadores alternativos.
- Plasma de arco e laser: tecnologias menos comuns, com alto custo e uso restrito a nichos específicos.

A escolha do equipamento deve levar em consideração não apenas o tipo de luz, mas também sua intensidade de saída (mW/cm²) e a compatibilidade com o material restaurador.

4. Cuidados com o Tempo e Intensidade da Luz

A intensidade da luz emitida, aliada ao tempo de exposição, determina o grau de conversão da resina. Uma cura inadequada pode resultar em restaurações com baixa dureza superficial, maior liberação de monômeros residuais, menor resistência mecânica e aumento do risco de falhas.

4.1 Parâmetros Ideais

- Intensidade: idealmente **acima de 1000 mW/cm²** para resinas convencionais, sendo que alguns fabricantes recomendam intensidades de até 1200–1500 mW/cm².
- Tempo: para camadas de 2 mm, recomenda-se 20 a 40 segundos com LED, dependendo da intensidade do aparelho e da cor/opacidade da resina.
- Distância: a ponta do fotopolimerizador deve estar o mais próxima possível da superfície da resina, evitando perdas por dispersão.

A redução do tempo sem compensação adequada na intensidade pode levar à cura incompleta, especialmente em camadas profundas, e comprometer a adesão. Também é importante manter a ponta do fotopolimerizador limpa e em boas condições, pois sujeiras e resinas fotopolimerizadas na lente reduzem drasticamente sua eficácia.

5. Erros Comuns na Técnica Incremental e Fotopolimerização

Apesar da simplicidade aparente da fotopolimerização, diversos erros técnicos podem ocorrer durante o procedimento restaurador:

- Aplicação de camadas muito espessas: camadas superiores a 2 mm reduzem a penetração da luz e dificultam a polimerização completa do material.
- Cura com intensidade insuficiente: aparelhos sem manutenção ou com luz fraca não polimerizam adequadamente a resina.
- Distância excessiva da luz: a dispersão da luz aumenta com o afastamento, reduzindo sua eficácia.
- Cura com luz inclinada ou fora do eixo: prejudica a penetração uniforme da luz, criando zonas não polimerizadas.
- Tempo de exposição insuficiente: mesmo com boa intensidade, o tempo abaixo do recomendado compromete a conversão polimérica.

 Descuido com o isolamento: contaminação por saliva ou sangue durante a polimerização compromete a adesão e a integridade da restauração.

Além disso, o **superaquecimento do dente** por exposição prolongada à luz intensa sem intervalos adequados pode causar danos pulpares, especialmente em cavidades profundas. Portanto, é necessário equilibrar eficiência e segurança durante a polimerização.

6. Considerações Finais

A eficácia das restaurações com resina composta depende de uma sequência técnica rigorosa. A técnica incremental, aliada a uma fotopolimerização controlada, contribui para reduzir a contração de polimerização, otimizar a adesão e aumentar a longevidade clínica das restaurações.

O conhecimento dos **tipos de luz disponíveis**, dos **parâmetros ideais de tempo e intensidade** e dos **erros técnicos mais comuns** permite ao profissional atuar com segurança e previsibilidade. A incorporação dessas boas práticas no cotidiano clínico é essencial para resultados restauradores duradouros e satisfatórios tanto do ponto de vista funcional quanto estético.

Referências Bibliográficas

- ANUSAVICE, K. J.; SHEN, C.; RAWLS, H. R. *Phillips Materiais Dentários*. 12. ed. Rio de Janeiro: Elsevier, 2013.
- PRICE, R. B. T. et al. Effect of light source and specimen thickness on microhardness of composite resins. *Operative Dentistry*, v. 37, n. 4, p. 386–393, 2012.
- ILIE, N.; HICKEL, R. Investigations on a methacrylate-based flowable composite based on the SDR technology. *Dental Materials*, v. 27, p. 348–355, 2011.
- SUMMITT, J. B. et al. Fundamentos de Odontologia Restauradora.
 3. ed. Rio de Janeiro: Santos, 2007.
- JOVANOVIC, S. A.; SWIFT Jr., E. J. Light-curing of resin-based composites. *Dental Clinics of North America*, v. 41, n. 4, p. 641–653, 1997.