

Procedimento Técnico e Prático para Fertirrigação

Eng. Agr. Denilson Luís Pelloso

Coord. Irrigação

Agrofito LTDA

Eng. Agr. Bruno Alves Dep. Agronômico

Netafim - Brasil

Conceitos básicos para a fertirrigação

Temas

- 1. Fontes e solubilidade;
- 2. Compatibilidade entre as fontes de fertilizantes;
- 3. Preparo da solução de fertilizantes;
- 4. Cálculo dos tanque, injetores e taxa de injeção;
- 5. Tempo de avanço;
- 6. Manejo da fertirrigação localizada;
- 7. Ferramentas de monitoramento da fertirrigação,
- 8. Exemplos de cabeçais de fertirrigação;
- 9. Resumo dos procedimentos para realizar uma fertirrigação.

Características a serem observadas nas fontes de fertilizantes a serem usadas na fertirrigação

- Solubilidade;
- Concentração dos nutrientes;
- Pureza,
- Condutividade elétrica;
- pH das fontes (reação ácida ou básica);
- Compatibilidade com outras fontes.

PRINCIPAIS FONTES DE FERTILIZANTES PARA FERTIRRIGAÇÃO E SUAS PROPRIEDADES (MACRONUTRIENTES)

Matérias Primas Soluveis	N	P_2O_5	K ₂ O	S	MgO C	aO	pH	Condutividade	Solubilid.	g/L H ₂ O difer	rentes T°C)
			%	, 			(1g/L de solução a 20°C)	dS/m	5°C	15°C	30°C
FERT. NITROGENADOS											
Nitrato de Amônio	33			0,1			5,22	1,6	1368	1732	2278
Sulfato de Amônio	21			22			5,27	1,91	695	723	766
Uréia	46						5,71	0,01	853	1093	1162
FERT. FOSFATADOS											
MAP (purificado)	12	61		0,3			4,68	0,83	253	332	451
Ac. Fosfórico 85%		61		1-2			2,5	1,8			
FERT. POTÁSSICOS											
Nitrato de Potássio	13,6		45				5,47	1,31	149	379	471
Sulfato de Potássio			50	18			5,62	1,47	88	126	184
Cloreto de Potássio			60				5,68	1,79	310	352	415
FERT. CALCICOS E MAGNESIANOS											
Nitrato de Calcio	15,5					27	5,09	1,16	2200	2058	1845
Nitrato de Calcio e Magnesio (CALMAG)	13,5				6	17	5,37	1,08	932	1418	2146
Sulfato de Magnesio Heptahidratado				13	16		4,02	0,73	357	430	540
Sulfato de Magnesio Anidro				26	32		5,73	1,28	271	437	401
Nitrato de Magnesio	11,5				16	1	5,56	0,85	1042	1007	937

Fonte: Libro Azul, Fertirriego

FONTES E CONCENTRAÇÕES DE MICRONUTRIENTES USADAS NA FERTIRRIGAÇÃO

Fertilizante		/langanês			Molibdenio
Fe EDTA	1:		7.0		
Zn EDTA			14		
Cu EDTA				13	
Molibidato de sodio					39
Sulfato de Cobre				25	
Sulfato de Zinco			35		
Sulfato de Manganês		32			
Sulfato ferroso	20				
Ácido Bórico	17				

Fonte: Libro Azul, Fertirriego

obs: Há disponível no mercado quelatos de micronutrientes que possui em sua formulação diferentes proporções desses elementos

O poder acidificante dos fertilizantes é um importante parâmetro na escolha das fontes a serem usadas na fertirrigação, com objetivo de se evitar a acidificação do bulbo úmido.

	Equivalente CaCO ₃
Fertilizante	(kg CaCO ₃ puro/100 kg do fertilizante
Cloreto de amônio	-140
Sulfato de amônio	-110
Amônia anidra	-147
Uréia	-84
Nitrato de amônio	-62
Nitrocálcio	-28
Nitrato de cálcio	+20
Nitrato de sódio	+29
Nitrato de potássio	+26
Superfosfato simples	0
Superfosfato triplo	0
Fosfato monoamônico	-65
Fosfato diamônico	-75
Termofosfato	+50
Cloreto de potássio	0
Sulfato de potássio	0
Sulfato de cálcio	0

A solubilidade das fontes é um **importante** parâmetro na determinação dos volumes dos tanques e taxa de injeção dos injetores, bem como no manejo geral da fertirrigação.

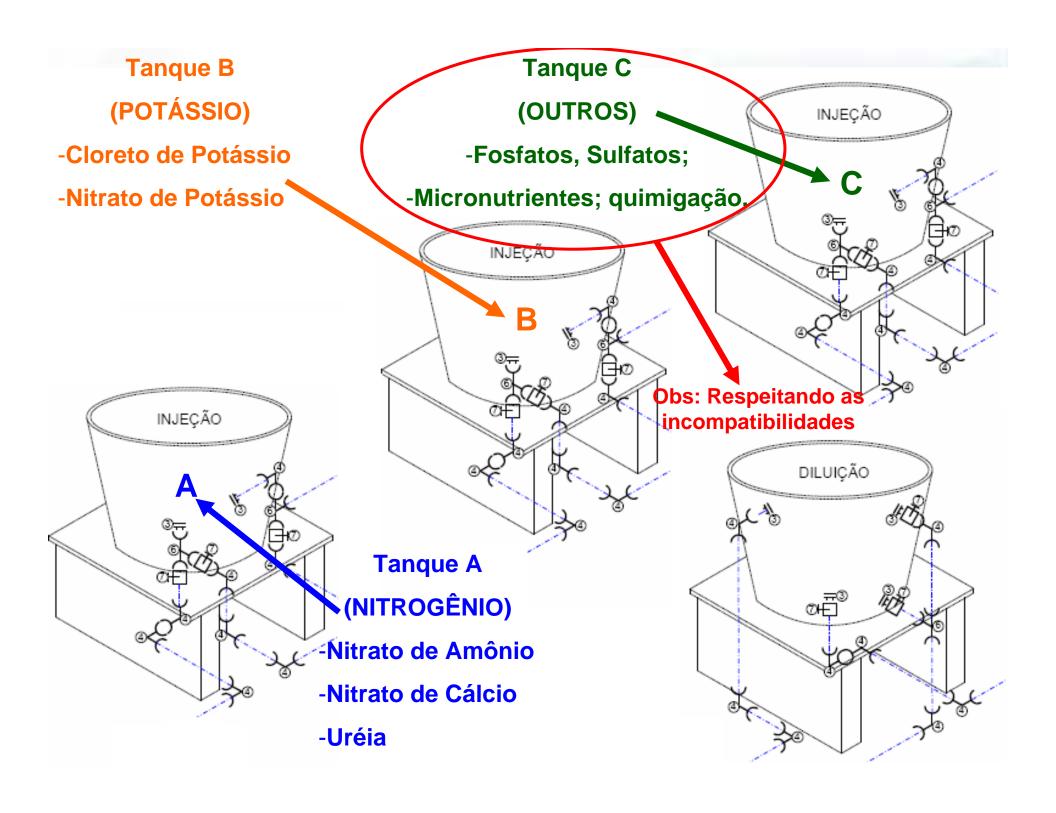
Nitrato de Cloreto de **Amônio MAP Potássio** NAA MAP

Preciptado Insolúvel

2. Compatibilidade entre as fontes de fertilizantes

Deve-se evitar a mistura de fontes incompatíveis no mesmo tanque para que não tenha formação de compostos insolúveis na solução.

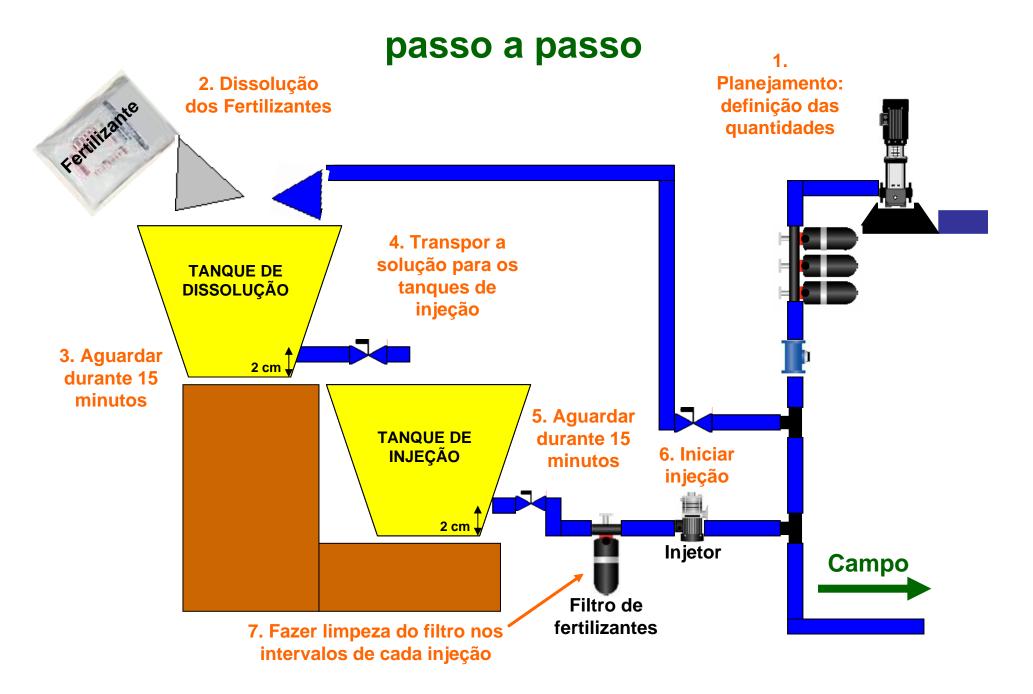
2. Compatibilidade entre as fontes de fertilizantes


Os precipitados insolúveis se injetados no sistema, causam obstrução parcial/total dos emissores. Portando deve-se ter muito critério na preparo das soluções!

Formação de precipitado insolúvel devido a mistura de fontes incompatíveis.

Solução???

DESCARTE DE TODA SOLUÇÃO!!!



3. Preparo das soluções de fertilizantes

- Planejar e definir as quantidades e as fontes a serem usadas;
- Dissolver os fertilizantes no tanque de dissolução (Fontes Compatíveis!!!);
- 3. Aguardar durante 15 minutos para decantar;
- Transpor a solução para os tanques de injeção captando a 2 cm do fundo da caixa, de preferência passando por um filtro;
- 5. Nos tanques de injeção, aguardar mais 15 minutos;
- 6. Iniciar a injeção, captando também a 2 cm do fundo da caixa passando pelo filtro da fertirrigação;
- 7. Realizar no intervalo de cada injeção a limpeza do filtro da fertirrigação.

Preparo das soluções de fertilizantes

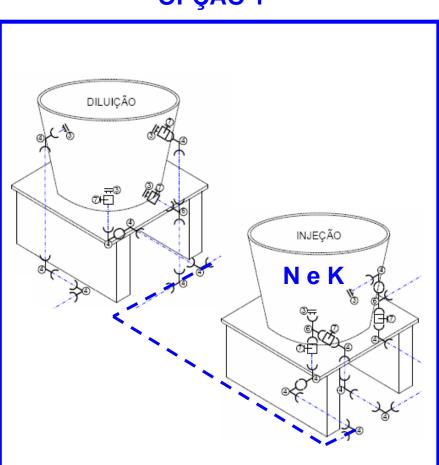
4. Cálculo dos tanques, injetores e taxa de injeção

Parâmetros para o dimensionamento:

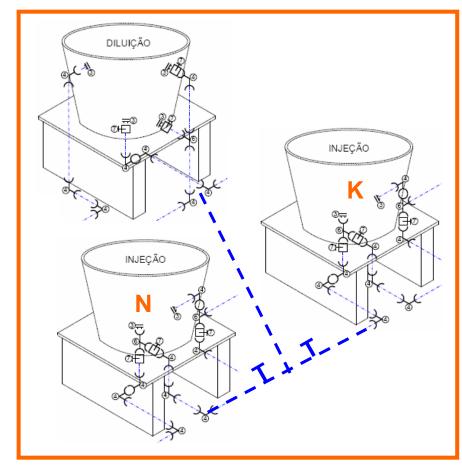
- ✓ As quantidades de nutrientes anuais ou por ciclo;
- √ O mês ou período de maior demanda de nutrientes;
- ✓ Quantidades de parcelamento no mês ou período crítico. Fertirrigação quantitava ou proporcional;
- ✓ Definir as fontes de fertilizantes a serem usadas;
- ✓ Solubilidade e compatibilidade das fontes;
- ✓ Condutividade elétrica da solução de fertilizantes;
- ✓ Tempo de avanço;
- ✓ Número de preparo de tanques a ser feito durante a operação (critério operacional).

Simulação de um dimensionamento. Situação comum no Estado de SP

- Área: 100 ha
- Espaçamento: 7 X 3,5 m
- Doses calculadas para o ciclo: 200 kg de N; 80 kg de P₂O₅ e 180 kg K₂O
- Fontes a serem usadas: Nitrato de Amônio (N);
 MAP (P₂O₅) e Cloreto de Potássio (K₂O)
- Número mínimo de parcelamentos/mês: 4
- No período crítico será usado: 15% do N; 15% do K₂O
- 100% do P₂O₅ será aplicado de uma vez a lanço


Simulação de um dimensionamento. Situação comum no Estado de SP (Características do projeto)

Cultura Área (ha) Citrus - SP 100


Emissor	Drip Net PC		
Vazão do Emissor (L/h)	2		
Lâmina (mm/dia)	3,08		
Esp. Entre Linhas (m)	7,00		
Esp. Entre Emissores (m)	0,65		
Lâmina do Emissor (mm/h)	0,44		
Número de Operações	3,0		
Tempo por Operação (h)	7,0		
Tempo Total (h)	21,0		
Vazão da Operação (m3/h)	146,5		

Opções de layout

OPÇÃO 1

OPÇÃO 2

Dimensionamento de Tanques para Fertirrigação Opção 1 - Nitrogênio e Potássio

Departamento Agronômico

1	ח	2	Ч	^	•	G	Δ	ra	ie
	u	а	u	v	3	u	ਢ	ıa	13

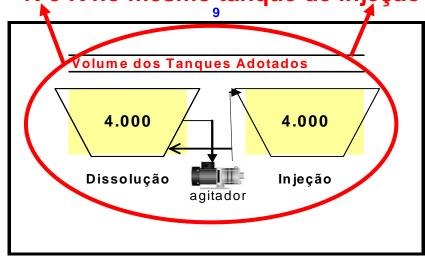
Fazenda:	Netafim
Cultura:	Citrus
Espaçamento entre plantas	7 m
Espacamento entre ruas	4 m

Área Total:100Número de Operações:3Tamanho da Operação:33,3 ha

Fase: Citrus em prudução

2	Expectativa de produtividade	>1200 caixas	QN (Kg/há)	240	QP (Kg/há)	80	QK (Kg/há)	180

		N	Р	K
3	Ajustes	1	1	1


	N	Р	K
Dose Calculada	N	P2O5	K20
para o ano agrícola	240	80	180

4	Período Crítico		Outubro)
		N	Р	K
		15%	0%	15%

5	Fontes		N	Р	K
		Nitrato de Amônio	33%		
		MAP		60%	
		Cloreto de Potássio			60%

6	Número de Parcelamentos	4
	no Período Crítico	4

N e K no mesmo tanque de injeção

Número de Preparo de Tanques	1
por Operação	'

Volume Total (I)

3.381

8 Tanques

	Kg Adubo	Solubilidade Kg/100l	Volume p/ Solução (I)
Nitrato de Amônio	909	50	1818
MAP	0	23	0
Cloreto de Potássio	375	24	1563

Dimensionamento de Tanques para Fertirrigação Opção 2 - Nitrogênio

Departamento Agronômico

	 _					_			
1	п	9	М	\sim	0	G		ro	
ı	u	ď	u	v	3	G	ਢ	ıa	13

Fazenda:	Netafim
Cultura:	Citrus
Espaçamento entre plantas	7 m
Espaçamento entre ruas	4 m

Área Total:100Número de Operações:3Tamanho da Operação:33,3 ha

Fase: Citrus em prudução

2 Expectativa de produtividade

>1200 caix	as
------------	----

QΡ	(Kg/h	á
----	-------	---

QK (Kg/há)

180

Volume Total (I)

1.818

		N	Р	K
3	Ajustes	1	1	1


	N	Р	K
Dose Calculada	N	P205	K20
para o ano agrícola	240	80	180

4	Período Crítico		Outubro	
		N	Р	K
		15%	0%	0%

5	Fontes		N	Р	K
		Nitrato de Amônio	33%		
		MAP		60%	
		Cloreto de Potássio			60%

6	Número de Parcelamentos	4
	no Período Crítico	4

N e K em tanques injeção separados

Número de Preparo de Tanques por Operação

8 Tanques

	Kg Adubo	Solubilidade Kg/100l	Volume p/ Solução (I)
Nitrato de Amônio	909	50	1818
MAP	0	23	0
Cloreto de Potássio	0	24	0

Dimensionamento de Tanques para Fertirrigação Opção 2 - Potássio

Departamento Agronômico

	 _					_			
1	п	9	М	\sim	0	G		ro	
ı	u	ď	u	v	3	G	ਢ	ıa	13

Fazenda:	Netafim	
Cultura:	Citrus	
Espaçamento entre plantas	7	m
Espaçamento entre ruas	4	m

Área Total:100Número de Operações:3Tamanho da Operação:33,3 ha

Fase: Citrus em prudução

Expectativa de produtividade

>1200	caixas
-------	--------

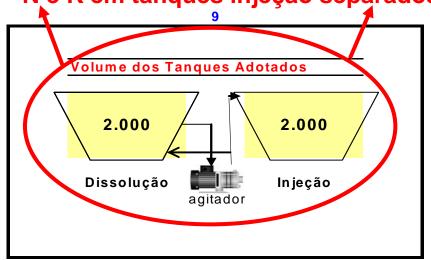
QN (I	(g/há)
-------	--------

QP (Kg/há)	
------------	--

QK (Kg/há)

180

N P K
3 Ajustes 1 1 1

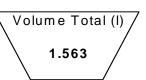

	N	Р	K
Dose Calculada	N	P205	K20
para o ano agrícola	240	80	180

4	Período Crítico		Outubro		
		N	Р	K	
		0.0/	0.0/	15%	

5	Fontes		N	Р	K
		Nitrato de Amônio	33%		
		MAP		60%	
		Cloreto de Potássio			60%

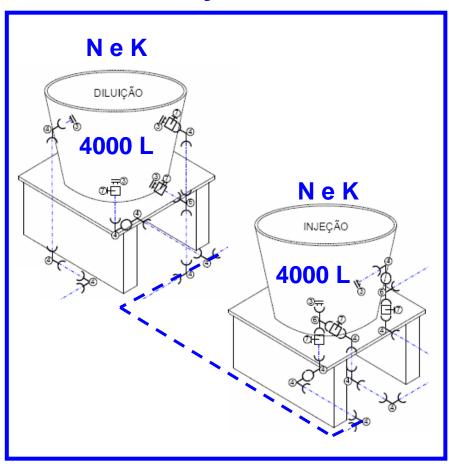
6	Número de Parcelamentos	1
	no Período Crítico	4

N e K em tanques injeção separados

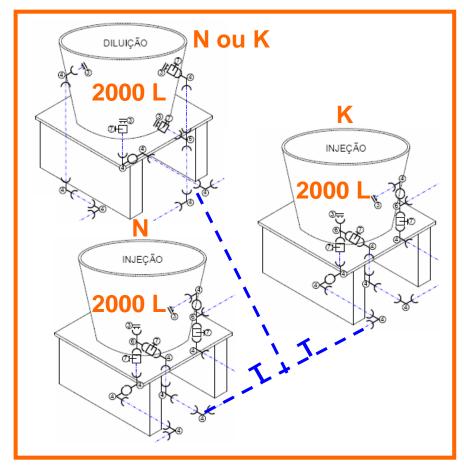

Número de Preparo de Tanques por Operação

8 Tanques

	Kg Adubo
Nitrato de Amônio	0
MAP	0
Cloreto de Potássio	375


Solubilidade Kg/100l	Volu
50	
23	
24	

Volume p/ Solução (I)
0
0
1563



Tanques dimensionados

OPÇÃO 1

OPÇÃO 2

Dimensionamento do injetor

Dimensionamento de Injetor para Fertirrigação

Departamento Agronômico

Dados GeraisVazão do Emissor2 l/hEspaçamento entre Emissores0,65 mEspaçamento entre Linhas7 mTaxa de Aplicação0,44 mm/h

1 Dados gerais do projeto;

Vazão do injetor **▼** dimensionado

2 Tempo Mínimo de Injeção 1,63 h

3 Vazão do Injetor 2.080 l/h

Volume a injetar

Tempo Mín. Injeção

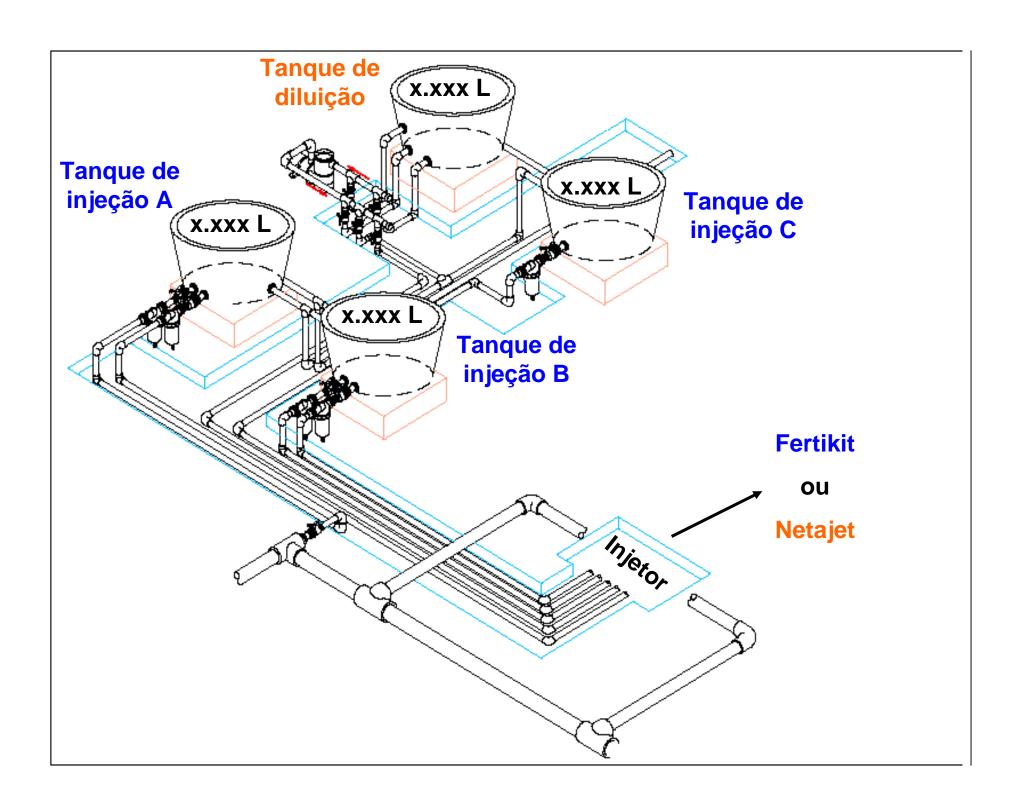
3.381 I

1,63 h

- 2 Tempo mínimo de injeção para que haja formação de um bulbo fertirrigado que atinda um volume mínimo de raízes e que a condutividade elétrica não fique muito alta;
- 3 Vazão do injetor calculado.

Volume de N e K a ser injetado no sistema no período crítico

Padrões de injetores Netafim para citrus


São Paulo

	Tanques de	Fertirrigação	
Área (ha)	Quantidade	Volume (I)	Vazão do Injetor (I/h)
0 a 40	4	1.000	1500 FK
40 a 80	4	2.000	1500 FK
80 a 120	4	3.000	1500 FK
120 a 200	4	5.000	5000 NJ
200 a 250	4	6.000	5000 NJ

FK: FERTIKIT

NJ: NETAJET

Injetores Netafim

5 Canais

Fertikit

300 I/h por canal

Capacidade Total: 1500 l/h

Netajet

Características dos injetores Netafim

- Podem automatizar todo o sistema;
- ➤ Injeção baseada em Venturis;
- > Compactos;
- Prontos para conexão ao sistema;
- Usam todos os recursos dos controladores;
- Possui acessórios de proteção;
- ➤ Maior facilidade e praticidade;
- Possui flexibilidade na regulagem da vazão de cada canal;
- Maior controle da fertirrigação.

Taxa de injeção baseada na condutividade elétrica da solução de fertilizantes

Segundo Gheyi et. al. (1999), a laranja é uma cultura sensível a salinidade do solo, com valor limiar de 1,7 dS m⁻¹, no qual o aumento unitário da condutividade elétrica do extrato de saturação pode causar 15,9% em redução no rendimento da cultura.

Manejo da injeção baseada na condutividade elétrica da solução de fertilizantes

15 minutos

5 hora e 30 minutos

1 hora e 15 minutos

Tempo necessário p/ pressurizar

Tempo disponível para fertirrigar

Tempo necessário p/ realizar a limpeza do sistema

Tempo total da operação: 7 horas

Manejo da injeção baseada na condutividade elétrica da solução de fertilizantes

Para realizar a fertirrigação nas 5h e 30 min. deve-se regular o injetor de fertilizantes para injetar 730 l/h (Volume da Caixa ÷ Tempo Máximo de Injeção)

Fontes	Quantidades (kg)	Volume Total da Injeção em 5,5 horas (Litros)	EC das Fontes (dS/m)	EC Total da Solução (dS/m)
Nitrato de Amônio	909	805.750	1,8	2,63
Cloreto de Potássio	375	000.700	0,83	2,00

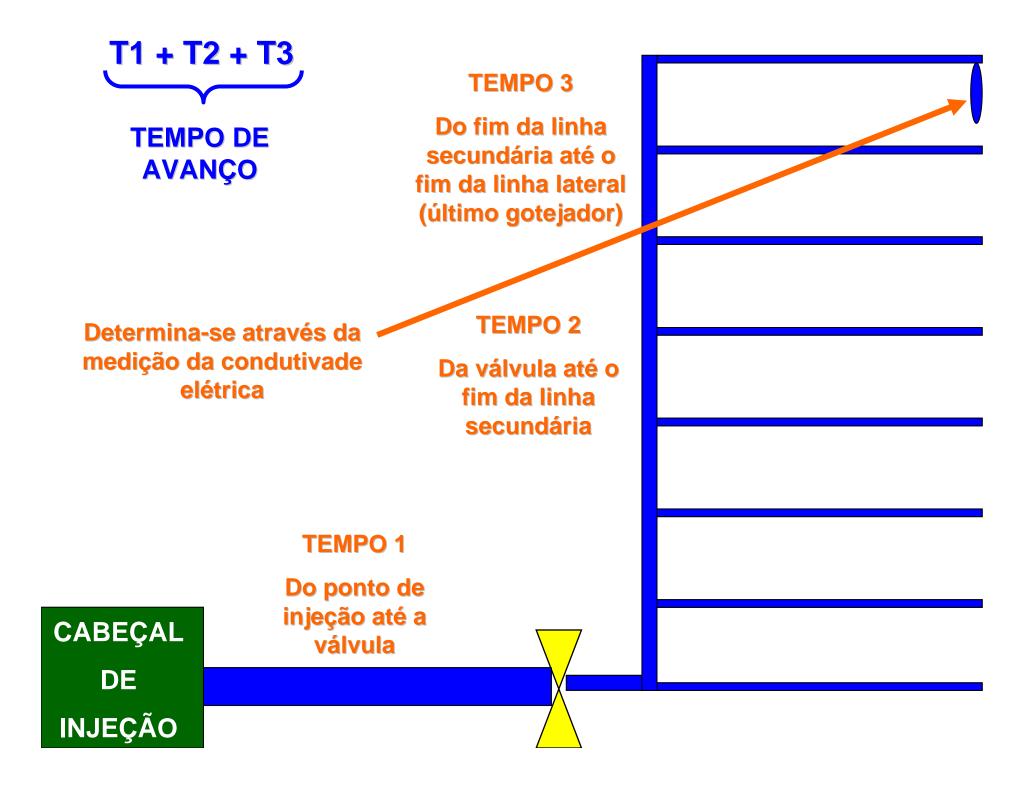
Qual a condutividade elétrica da solução de fertilizantes???

Ou seja a Condutividade está maior do que os 1,7 dS/m recomendado na literatura.

Fazer 2 fertirrigações por semana!!!

Solução???

5. Tempo de avanço


Tempo necessário para que o fertilizante chegue ao ponto mais distante da operação

T1: Do ponto de injeção até a válvula;

T2: Da válvula até o fim da linha secundária;

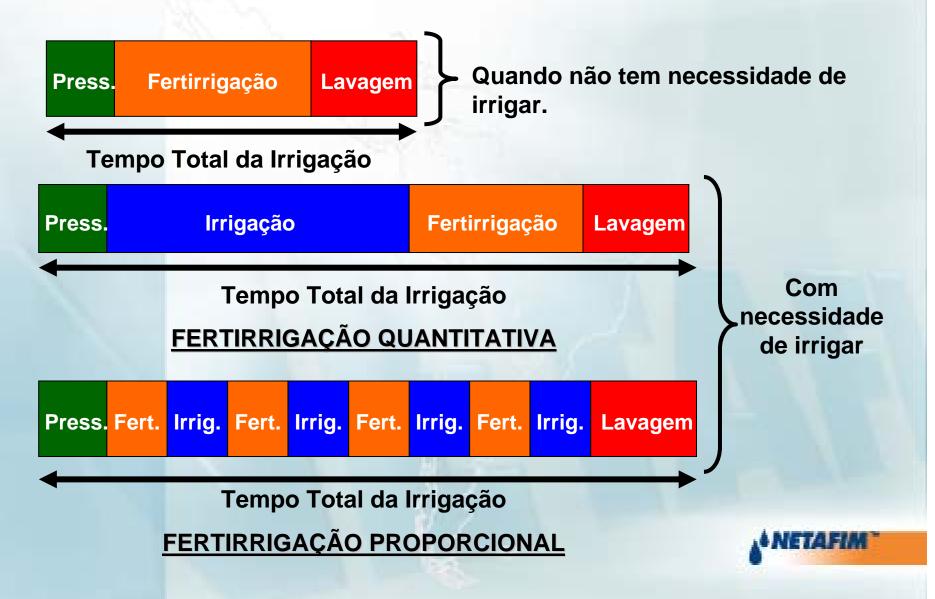
T3: Do fim da linha secundária até o fim da linha lateral (último gotejador).

Tempo total para realizar uma fertirrigação

O tempo de avanço é um importante parâmetro a ser medido já que o mesmo irá determinar o tempo necessário para fazer a limpeza do sistema no fim de cada fertirrigação.

TEMPO TOTAL DA FERTIRRIGAÇÃO

TEMPO NECESSÁRIO PARA INJETAR TODA SOLUÇÃO


TEMPO NECESSÁRIO PARA LAVAR O SISTEMA

CORRESPONDE AO TEMPO DE AVANÇO CALCULADO!!!

Esquema de fertirrigação

6. Manejo da fertirrigação localizada

Comentários...

Ferramentas de monitoramento da fertirrigação

São ferramentas que permitem o monitoramento frequente de alguns parâmetros importantes ligados a fertirrigação. Com o auxílio dos extratores de solução do solo, pode-se determinar o pH, condutividade elétrica e análise de NO₃, NO₂, P₂O₅ e K₂O da solução do solo.

Extratores de solução do solo

Relizam a extração da solução do solo, e através dessa ferramenta pode-se monitorar o movimento de sais no perfil do solo, bem como monitorar os parâmetros citados adiante.

Monitoramento de NO₃, NO₂, P₂O₅ e K₂O na solução do solo

Monitoramento do pH da solução

Importante o monitoramento frequente, já que o pH da solução do solo influencia diretamente na disponibilidade dos nutrientes para as plantas!!!

Monitoramento da Condutividade Elétrica

- -Monitora a quantidade de sais diluidos na solução do solo.
- -Quanto maior a concentração de sais, maior será a condutividade
- -Importante monitorar para que não haja uma condutividade muito elevada no bulbo, bem como monitorar a lixiviação dos nutrientes.

Alguns exemplos de cabeçais de fertirrigação Netafim

Netajet

Alguns exemplos de cabeçais de fertirrigação Netafim

Netajet

Alguns exemplos de cabeçais de fertirrigação Netafim Fertikit



Alguns exemplos de cabeçais de fertirrigação Netafim Fertikit

Outros exemplos de cabeçais de fertirrigação.

9. Resumo dos procedimentos para realizar uma fertirrigação

- Definir as quantidades dos nutrientes e o parcelamento;
- 2. Definir fontes de fertilizantes a serem usadas;
- 3. Ter critério se for realizar misturas entre fontes de fertilizantes (COMPATIBILIDADES);
- 4. Preparar a solução (Dissolver nas caixas de dissolução e transpor para as caixas de Injeção);
- 5. Iniciar a injeção do fertilizante após o sistema estar pressurizado;
- 6. Realizar a limpeza do filtro da fertirrigação no intervalo de cada injeção;
- 7. No fim da fertirrigação, fazer a limpeza do sistema de acordo com o tempo de avanço determinado.

Eng. Agr. Denilson Luís Pelloso
Agrofito LTDA
denilson@agrofito.com.br

Eng. Agr. Bruno Alves
Departamento Agronômico
NETAFIM BRASIL
bruno.alves@netafim.com.br

OBRIGADO!!!

NETAFIM