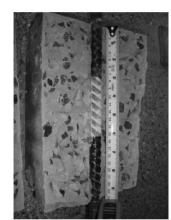
ANCORAGEM E EMENDADE ARMADURAS

1. ADERÊNCIA ENTRE CONCRETO E ARMADURA

Fundamental para a existência do Concreto Armado (trabalho

conjunto entre os dois materiais).

Fenômeno da aderência:


- a) mecanismo de transferência de força da barra de aço para o concreto adjacente;
- b) capacidade do concreto resistir a essa força.

Ruptura por fendilhamento

Vista superior de ruptura

Comprimento de ancoragem

1. ADERÊNCIA ENTRE CONCRETO E ARMADURA

Transferência de força ocorre por ações químicas (adesão), por atrito e por ações mecânicas.

É função principalmente da textura da superfície da barra de aço e da qualidade do concreto.

1.1 ADERÊNCIA POR ADESÃO

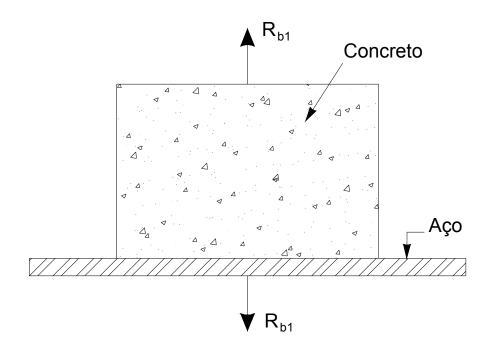
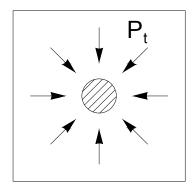
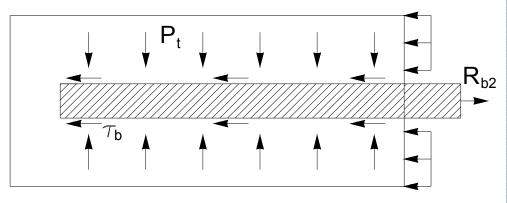




Figura 1 – Aderência por adesão (FUSCO, 2000).

1.2 ADERÊNCIA POR ATRITO

Ruptura por deslizamento da barra

Figura 3 – Aderência por atrito (FUSCO, 2000).

Vista inferior

Comprimento de ancoragem

1.3 ADERÊNCIA MECÂNICA

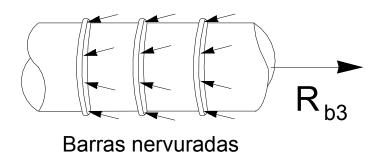


Figura 4 – Aderência mecânica (FUSCO, 2000).

Ruptura por deslizamento da barra

Vista inferior

1.4 MECANISMOS DA ADERÊNCIA

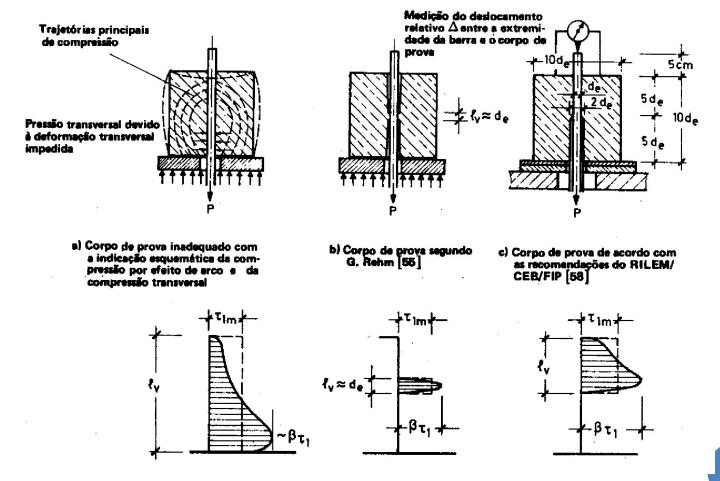


Figura 5 – Tipos de corpos de prova utilizados em ensaio de arrancamento para determinação da resistência de aderência (Leonhardt e Mönnig, 1982).

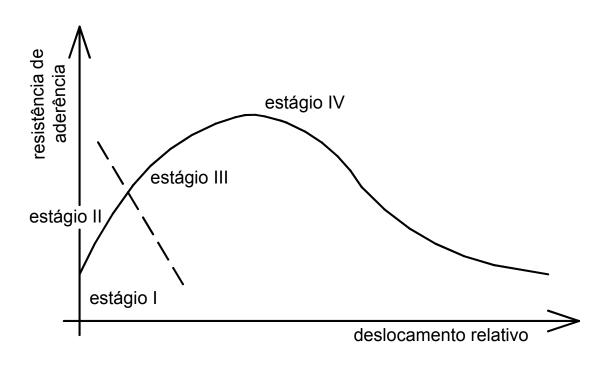
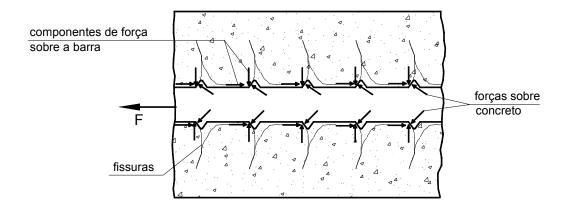
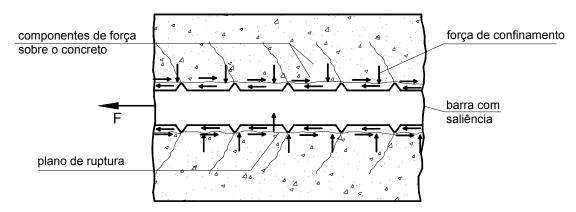




Figura 6 – Diagrama esquemático de <u>resistência de aderência x</u> <u>escorregamento</u> do ensaio de arrancamento (FIB, 1999).

a) Ruptura pelas fissuras de fendilhamento;

b) Ruptura dos consolos por cisalhamento e consequente arrancamento da barra.

Figura 7 – Ação das saliências da barra de aço sobre o concreto e modos de ruptura (FUSCO, 2000).



Figura 8 – Fissuras radiais de fendilhamento (FUSCO, 2000).

2. ADERÊNCIA E FENDILHAMENTO

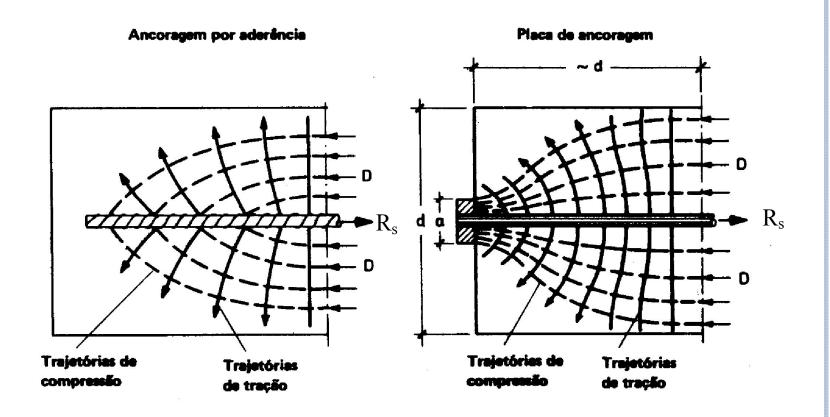


Figura 9 – Trajetórias das tensões principais em região de ancoragem₁₁ de barra reta e com placa de ancoragem (Leonhardt e Mönnig, 1982).

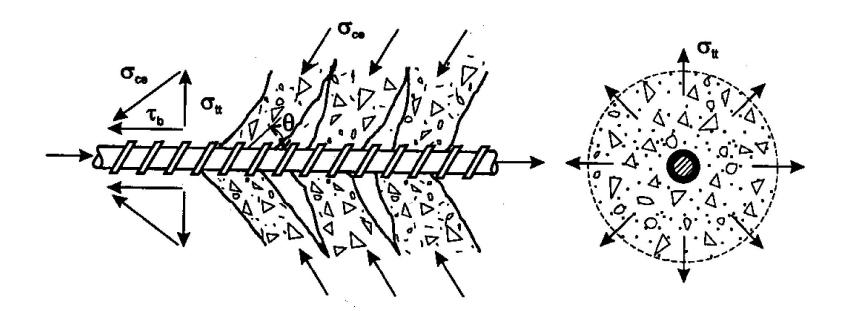


Figura 10 – Tensões atuantes na ancoragem por aderência de barra com saliências (FUSCO, 2000).

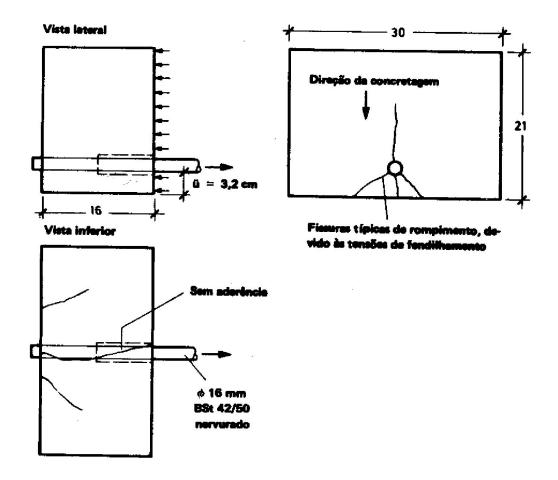


Figura 11 – Fissuras de fendilhamento na região de ancoragem sem armadura transversal (Leonhardt e Mönnig, 1982) 13

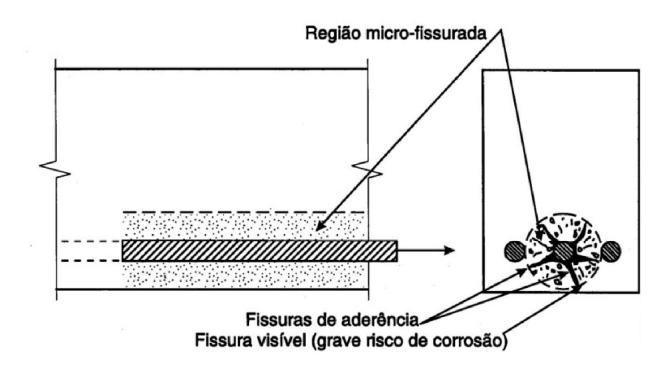


Figura 12 – Fendilhamento ao longo da barra ancorada. (Leonhardt e Mönnig, 1982).

Como afirma FUSCO (2000), o importante na ancoragem de barras tracionadas é "garantir a manutenção da integridade das bielas diagonais comprimidas e assegurar que os esforços transversais de tração possam ser adequadamente resistidos".

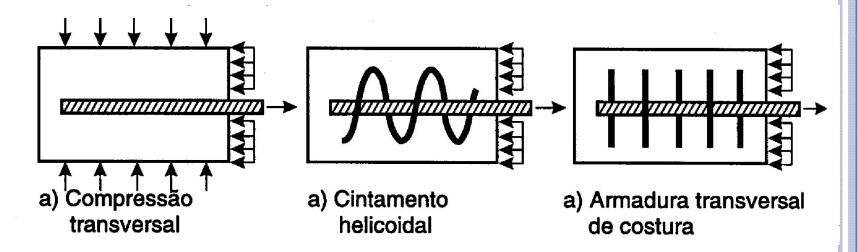


Figura 13 – Armadura para evitar fissuras de fendilhamento na ancoragem reta (FUSCO, 2000).

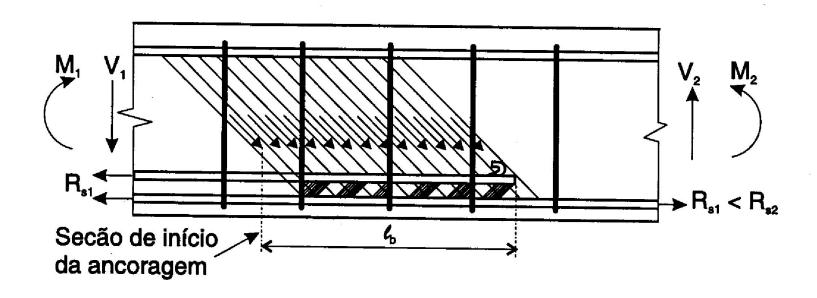


Figura 14 - Atuação favorável dos estribos para evitar fissuras por fendilhamento na região de ancoragem reta (FUSCO, 2000).

3. SITUAÇÕES DE BOA E DE MÁ ADERÊNCIA

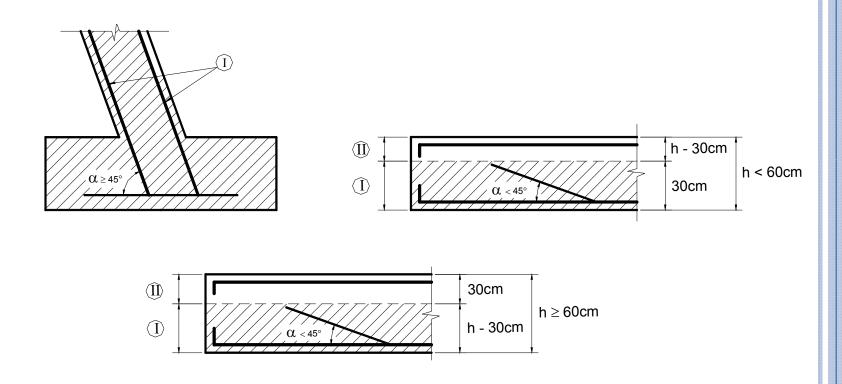


Figura 15 – Regiões de boa (I) e de má (II) aderência.

4. RESISTÊNCIA DE ADERÊNCIA

$$f_{bd} = \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot f_{ctd}$$

$$f_{ctd} = \frac{f_{ctk,inf}}{\gamma_c} = \frac{0.7 f_{ct,m}}{\gamma_c} = \frac{0.7.0.3}{\gamma_c} \sqrt[3]{f_{ck}^2}$$

 η_1 — parâmetro que considera a rugosidade da barra de aço:

 $\eta_1 = 1,0$ para barras lisas;

 $\eta_1 = 1,4$ para barras entalhadas;

 $\eta_1 = 2,25$ para barras nervuradas.

η_2 – parâmetro que considera a posição da barra:

 $\eta_2 = 1,0$ para situações de boa aderência;

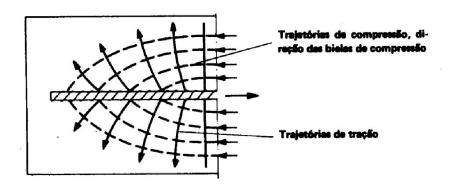
 $\eta_2 = 0.7$ para situações de má aderência.

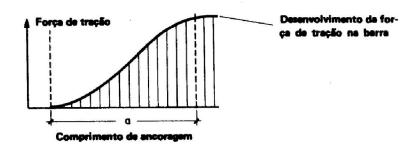
η₃ – parâmetro que considera o diâmetro da barra:

 $\eta_3 = 1.0 \text{ para } \phi < 32 \text{ mm};$

 $\eta_3 = (132 - \phi)/100$, para $\phi \ge 32$ mm;

 $com \phi = diâmetro da barra em mm.$


5. ANCORAGEM DE ARMADURA PASSIVA POR ADERÊNCIA


NBR 6118 (item 9.4.1):

"Todas as barras das armaduras devem ser ancoradas de forma que as forças a que estejam submetidas sejam integralmente transmitidas ao concreto, seja por meio de aderência ou de dispositivos mecânicos ou por combinação de ambos."

A ancoragem de uma barra de aço pode ser feita pela aderência entre o concreto e a barra, por dispositivos mecânicos, ou pela combinação de ambos (NBR 6118).

A ancoragem da barra por aderência pode ocorrer por um comprimento reto ou com grande raio de curvatura, seguido ou não de gancho.

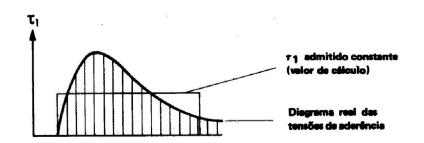


Figura 16 – Diagrama de tensões de aderência na ancoragem reta de barra de aço (Leonhardt e Mönnig, 1982).

5.1 COMPRIMENTO DE ANCORAGEM BÁSICO E NECESSÁRIO

Definição: "comprimento reto de uma barra de armadura passiva necessário para ancorar a força-limite $A_s f_{yd}$ nessa barra, admitindo-se, ao longo desse comprimento, resistência de aderência uniforme e igual a f_{bd} ."

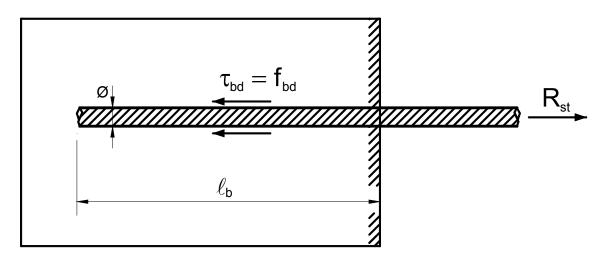


Figura 17 – Comprimento de ancoragem básico de uma barra reta.

$$R_{st} = f_{bd} \cdot u \cdot \ell_b$$

$$A_s \cdot f_{yd} = f_{bd} \cdot u \cdot \ell_b$$

com $u = \pi \cdot \phi$ e $A_s = \pi \cdot \phi^2/4$ tem-se:

$$\ell_b = \frac{\frac{\pi \cdot \phi^2}{4} f_{yd}}{f_{bd} \cdot \pi \cdot \phi}$$

$$\ell_b = \frac{\phi}{4} \frac{f_{yd}}{f_{bd}}$$

 $\ell_{\rm b}$ = comprimento de ancoragem básico.

	Tabela A-1															
(COMPRIMENTO DE ANCORAGEM (cm) PARA $A_{s,ef} = A_{s,calc}$ CA-50 nervurado										lo					
		Concreto														
ф (mm)	C15		C20		C25		C30		C35		C40		C45		C50	
	Sem	Com	Sem	Com	Sem	Com	Sem	Com	Sem	Com	Sem	Com	Sem	Com	Sem	Com
6,3	48	33	39	28	34	24	30	21	27	19	25	17	23	16	21	15
0,3	33	23	28	19	24	17	21	15	19	13	17	12	16	11	15	10
8	61	42	50	35	43	30	38	27	34	24	31	22	29	20	27	19
	42	30	35	24	30	21	27	19	24	17	22	15	20	14	19	13
10	76	53	62	44	54	38	48	33	43	30	39	28	36	25	34	24
10	53	37	44	31	38	26	33	23	30	21	28	19	25	18	24	17
12,5	95	66	78	55	67	47	60	42	54	38	49	34	45	32	42	30
	66	46	55	38	47	33	42	29	38	26	34	24	32	22	30	21
16	121	85	100	70	86	60	76	53	69	48	63	44	58	41	54	38
	85	59	70	49	60	42	53	37	48	34	44	31	41	29	38	27
20	151	106	125	87	108	75	95	67	86	60	79	55	73	51	68	47
	106	74	87	61	75	53	67	47	60	42	55	39	51	36	47	33

Valores de acordo com a NBR 6118.

Nº Superior: Má Aderência ; Nº Inferior: Boa Aderência Sem e Com indicam sem ou com gancho na extremidade da barra

 $A_{s,ef}$ = área de armadura efetiva ; $A_{s,calc}$ = área de armadura calculada

O comprimento de ancoragem deve ser maior do que o comprimento mínimo:
$$\ell_{b,min} \ge \begin{cases} 0.3 \ \ell_b \\ 10 \ \phi \\ 100 \ mm \end{cases}$$

 $\gamma_{\rm c} = 1.4$; $\gamma_{\rm s} = 1.15$

Comprimento de ancoragem necessário (\ell_{b,nec})

$$\ell_{b,\text{nec}} = \alpha \ell_b \frac{A_{s,\text{calc}}}{A_{s,\text{ef}}} \ge \ell_{b,\text{min}} \ge \begin{cases} 0.3 \ell_b \\ 10 \phi \\ 100 \text{ mm} \end{cases}$$

 $\alpha = 1,0$ - para barras sem gancho;

 $\alpha = 0.7$ - para barras tracionadas com gancho, com cobrimento no plano normal ao do gancho $\geq 3 \ \phi$;

 $\alpha = 0.7$ - quando houver barras transversais soldadas conforme 9.4.2.2;

 $\alpha = 0.5$ - quando houver barras transversais soldadas conforme 9.4.2.2 e gancho com cobrimento no plano normal ao do gancho $\geq 3\phi$;

 $\ell_{\rm b}$ = comprimento de ancoragem básico; $A_{\rm s,calc}$ = área da armadura calculada; $A_{\rm s,ef}$ = área da armadura efetiva (escolhida).

5.2 DISPOSIÇÕES CONSTRUTIVAS

5.2.1 PROLONGAMENTO RETILÍNEO DA BARRA OU GRANDE RAIO DE CURVATURA

Barras tracionadas podem ser ancoradas com comprimento retilíneo ou com grande raio de curvatura em sua extremidade, conforme:

- a) obrigatoriamente com gancho para barras lisas;
- b) sem gancho nas que tenham alternância de solicitação, de tração e compressão;
- c) com ou sem gancho nos demais casos, não sendo recomendado o gancho para barras de $\phi > 32$ mm ou para feixes de barras.

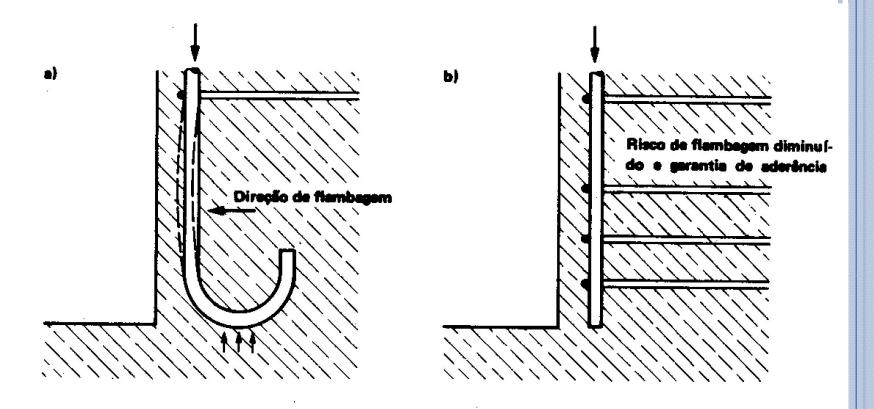


Figura 18 – O gancho na ancoragem de barra comprimida pode ocasionar o rompimento do cobrimento de concreto. (Leonhardt e Mönnig, 1982).

5.2.2 Barras Transversais Soldadas

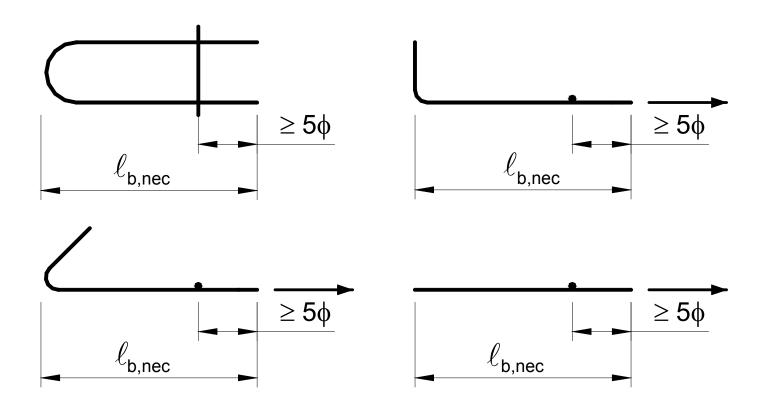


Figura 19 – Critérios para posicionamento de barras transversais soldadas à barra ancorada.

5.2.3 GANCHOS DAS ARMADURAS DE TRAÇÃO

Figura 20 – Características dos ganchos nas extremidades de barras tracionadas.

Tabela 1 - Diâmetro dos pinos de dobramento (D).

Bitola	Tipo de aço						
(mm)	CA-25	CA-50	CA-60				
< 20	4 φ	5 ф	6 ф				
≥ 20	5 ф	8 ф	-				

5.2.4 Armadura Transversal na Ancoragem

Para barras com ϕ < 32 mm: "Ao longo do comprimento de ancoragem deve ser prevista armadura transversal capaz de resistir a 25 % da força longitudinal de uma das barras ancoradas. Se a ancoragem envolver barras diferentes, prevalece, para esse efeito, a de maioradiâmetro." (NBR 6118 (9.4.2.6.1)

5.2.5 ANCORAGEM DE ESTRIBOS

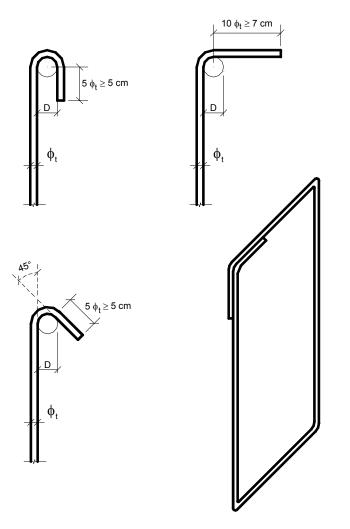


Figura 21 – Tipos de ganchos para os estribos.

6. EMENDA DE BARRAS

Tipos de emendas:

a) Traspasse(ou transpasse);

b) luvas com preenchimento metálico, rosqueadas ou prensadas;

6. EMENDA DE BARRAS

Tipos de emendas:

c) solda;

http://equipedeobra.pini.com.br/construcao-reforma/66/conheca-os-diferentes-tipos-de-emendas-emvergalhoes-para-garantir-301534-1.aspx

d) outros dispositivos devidamente justificados.

6.1 EMENDA POR TRASPASSI

Figura 22 – Aspecto da fissuração na emenda de duas barras (Leonhardt e Mönnig, 1982).

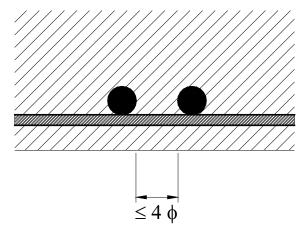
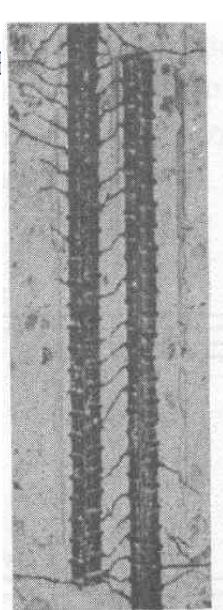



Figura 24 – Espaçamento máximo entre duas barras emendadas por transpasse.

6.1.1 Proporção de Barras Emendadas

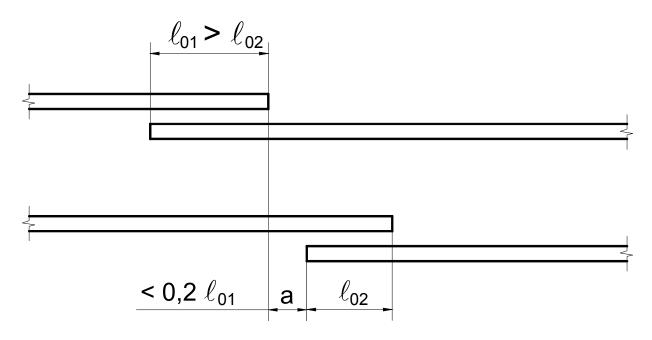


Figura 26 – Emendas supostas na mesma seção transversal.

- se a $< 0.2\ell_{01}$ \rightarrow as emendas ocorrem na mesma seção;
- se a $> 0.2\ell_{01}^{-1}$ \rightarrow as emendas ocorrem em seções diferentes.

Tabela 3 – Proporção máxima de barras tracionadas emendadas.

Tipo de barra	Situação	Tipo de carregamento		
		Estático	Dinâmico	
Alta aderência	Em uma camada	100 %	100 %	
	Em mais de uma camada	50 %	50 %	
Lisa	φ < 16 mm	50 %	25 %	
	φ ≥ 16 mm	25 %	25 %	

6.1.2 COMPRIMENTO DE TRASPASSE DE BARRAS ISOLADAS TRACIONADAS

$$\ell_{0t} = \alpha_{0t} \ \ell_{b,nec} \ge \ell_{0t,min} \ge \begin{cases} 0.3 \ \alpha_{0t} \ \ell_{b} \\ 15 \ \phi \\ 200 \ mm \end{cases}$$

Tabela 4 – Valores do coeficiente α_{0t} .

Barras emendadas na mesma seção (%)	≤ 20	25	33	50	> 50
Valores de α_{0t}	1,2	1,4	1,6	1,8	2,0

6.1.3 COMPRIMENTO DE TRASPASSE DE BARRAS ISOLADAS COMPRIMIDAS

$$\ell_{0c} = \ell_{b,nec} \ge \ell_{0c,min} \ge \begin{cases} 0.6 \, \ell_{b} \\ 15 \, \phi \\ 200 \, mm \end{cases}$$

6.1.4 ARMADURA TRANSVERSAL NAS EMENDAS POR TRASPASSE DE BARRAS ISOLADAS

Com o objetivo de combater as tensões transversais de tração, que podem originar fissuras na região da emenda, a NBR 6118 recomenda a adoção de armadura transversal à emenda, em função da emenda ser de barras tracionadas, comprimidas ou fazer parte de armadura secundária.

6.1.4.1 ARMADURA PRINCIPAL TRACIONADA

Quando ϕ < 16 mm ou a proporção de barras emendadas na mesma seção for menor que 25 %, a área da armadura transversal deve resistir a 25 % da força longitudinal atuante na barra.

Nos casos em que $\phi \ge 16$ mm ou quando a proporção de barras emendadas na mesma seção for maior ou igual a 25 %, a armadura transversal deve:

- a) ser capaz de resistir a uma força igual à de uma barra emendada, considerando os ramos paralelos ao plano da emenda;
- b) ser constituída por barras fechadas se a distância entre as duas barras mais próximas de duas emendas na mesma seção for $< 10 \phi (\phi = diâmetro da barra emendada);$
- c) concentrar-se nos terços extremos da emenda.

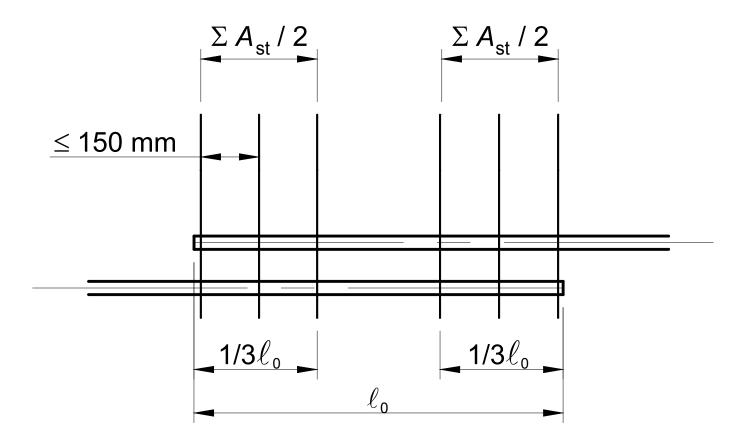


Figura 27 – Disposição da armadura transversal nas emendas de barras tracionadas.

6.1.4.2 ARMADURA PRINCIPAL COMPRIMIDA

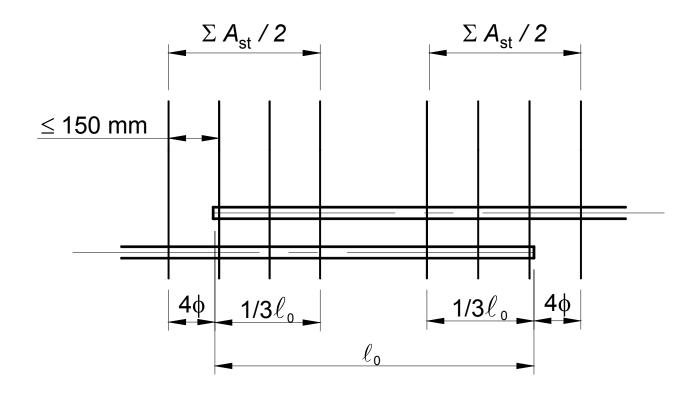


Figura 28 – Disposição da armadura transversal nas emendas de barras comprimidas.

7. ANCORAGEM DA ARMADURA LONGITUDINAL DE FLEXÃO EM VIGAS

Neste item será visto como deve ser feito o detalhamento da armadura longitudinal de tração das vigas, ou seja, até que posição do vão as barras devem se estender, e também a ancoragem das barras que chegarem até os apoios intermediários e extremos.

7.1 Decalagem do Diagrama de Forças no Banzo Tracionado

A decalagem (a_{ℓ} - deslocamento) do diagrama de forças R_{Sd} (M_{Sd} / z) deve ser feito para se compatibilizar o valor da força atuante na armadura tracionada, determinada no banzo tracionado da treliça de Ritter-Mörsch, com o valor da força determinada segundo o diagrama de momentos fletores de cálculo.

A decalagem (a_{ℓ}) pode ser substituída, aproximadamente, pela correspondente decalagem de diagrama de momentos fletores de cálculo (M_{Sd}) .

7.1.1 Modelo de Cálculo I

$$a_{\ell} = d \left[\frac{V_{Sd,m\acute{a}x}}{2 \left(V_{Sd,m\acute{a}x} - V_{c} \right)} (1 + \cot g \alpha) - \cot g \alpha \right] \leq d$$

sendo:
$$a_{\ell} = d$$
 para $\left| V_{Sd,máx} \right| \le V_c$

$$a_{\ell} \ge 0.5 d$$
 - no caso geral;

$$a_{\ell} \ge 0.2 d$$
 - para estribos inclinados a 45°.

Para estribo vertical ($\alpha = 90^{\circ}$):

$$a_{\ell} = \frac{d}{2} \frac{V_{Sd,m\acute{a}x}}{(V_{Sd,m\acute{a}x} - V_c)} \leq d$$

7.1.2 Modelo de Cálculo II

$$a_{\ell} = 0.5 d (\cot g \theta - \cot g \alpha)$$

sendo: $a_{\ell} \ge 0.5 d$ - no caso geral;

 $a_{\ell} \ge 0.2 \text{ d}$ - para estribos inclinados a 45 °.

7.2 Ponto de Início de Ancoragem

Em que ponto ao longo do vão da viga pode-se retirar de serviço uma barra da armadura longitudinal tracionada de flexão, a fim de gerar economia de aço?

A ancoragem por aderência de uma barra da armadura longitudinal de tração tem início na seção teórica onde sua tensão σ_s começa a diminuir, ou seja, o esforço da armadura começa a ser transferido para o concreto. O comprimento da ancoragem deve prolongar-se pelo menos 10 ϕ além do ponto teórico de tensão σ_s nula. Considerando o diagrama de forças $R_{Sd}=M_{Sd}/z$, decalado do comprimento a_ℓ , o início do comprimento de ancoragem da barra corresponde ao ponto A, devendo prolongar-se no mínimo 10 ϕ além do ponto B.

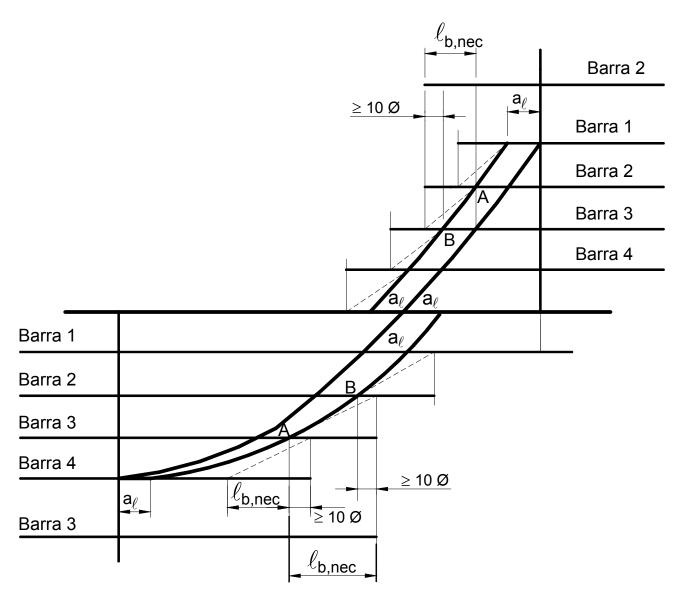


Figura 29 – Cobertura do diagrama de forças de tração solicitantes pelo diagrama de forças resistentes.

Exemplo para armadura positiva

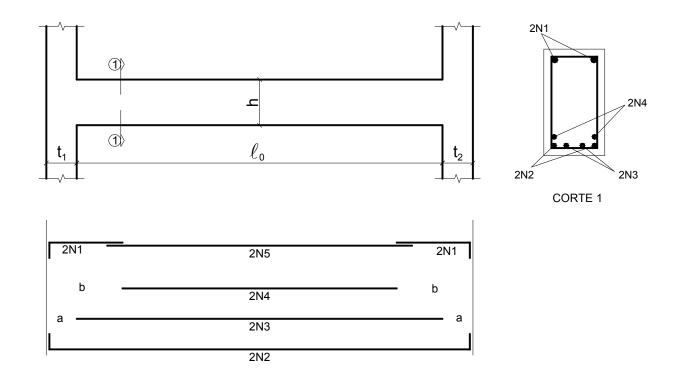
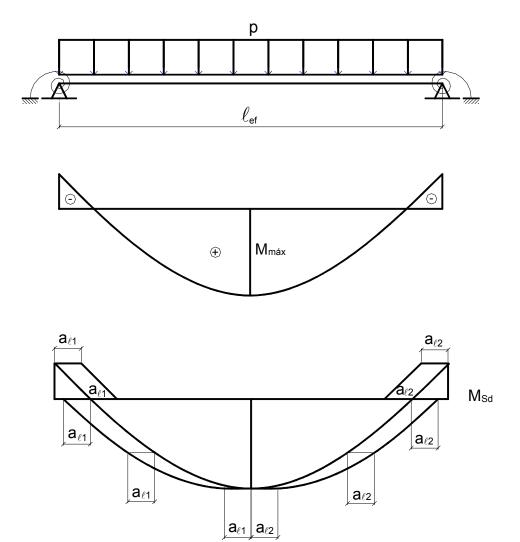



Figura 30 – Viga biapoiada para análise do cobrimento do diagrama de momentos fletores positivos.

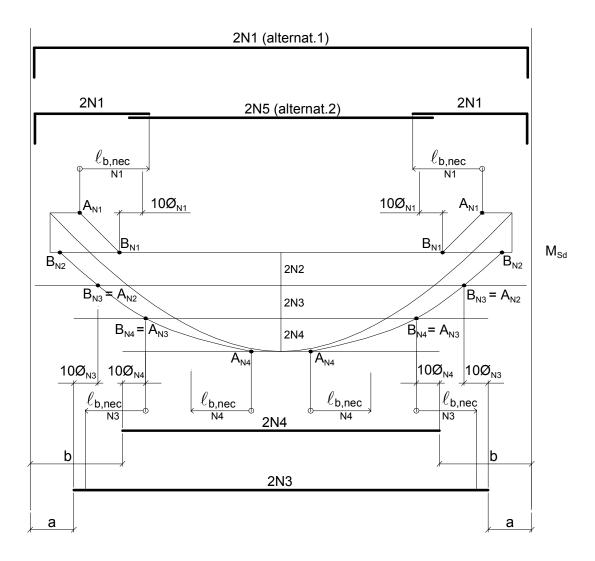


Figura 31 – Cobrimento do diagrama de momentos fletores positivos em uma viga biapoiada simétrica.

Exemplo para armadura negativa

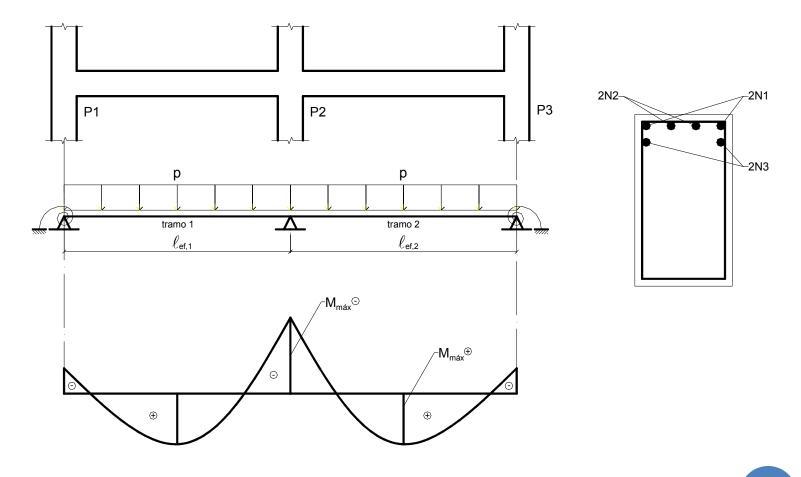


Figura 32 – Viga para análise do cobrimento do diagrama de momentos fletores negativos no apoio P2.

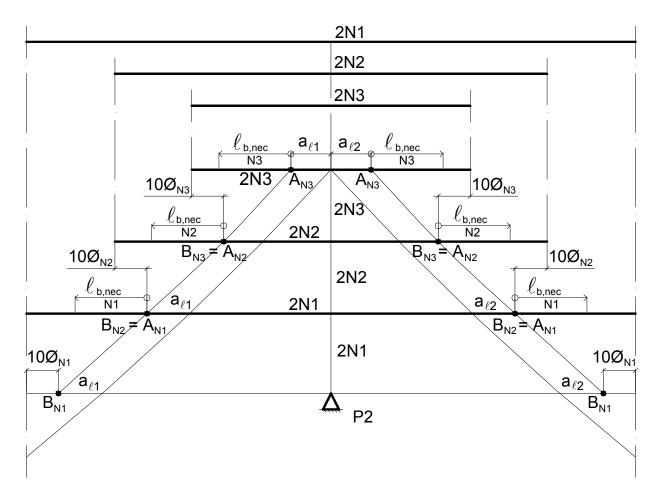


Figura 33 – Cobrimento do diagrama de momentos fletores negativos no apoio intermediário P2.

7.3 Armadura Tracionada nas Seções de Apoio

7.3.1 Apoio com Momento Fletor Positivo

Neste caso a armadura deve ser dimensionada para o esforço nessa seção. A ancoragem da armadura no apoio deve atender aos critérios apresentados na Figura 29 (item 7.1).

7.3.2 Armadura Positiva em Apoios Extremos de Vigas Simples ou Contínuas

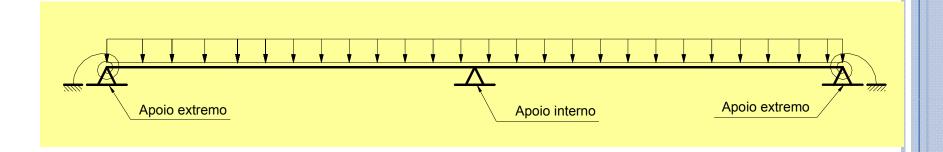


Figura 30 – Definição de apoios extremos e internos de vigas.

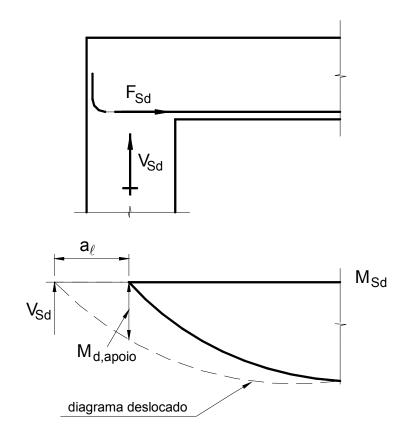


Figura 35 – Momento fletor no apoio devido ao deslocamento a_{ℓ} do diagrama.

Nos apoios extremos, devido ao deslocamento do diagrama de momentos fletores (a_{ℓ}) , surge uma força de tração R_{Sd} na seção de apoio, correspondente ao momento fletor, dado por:

$$\mathbf{M}_{d,apoio} = \mathbf{V}_{Sd}$$
 . \mathbf{a}_{ℓ}

Sendo:

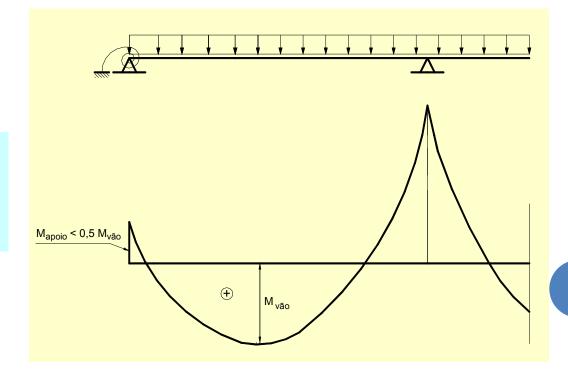
$$M_{d,apoio} = F_{Sd} \cdot z$$

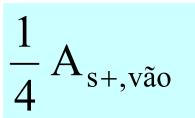
e $z \approx d$, fica:

$$F_{Sd} = \frac{a_{\ell}}{d} \, V_{Sd}$$

Para proporcionar resistência à força de tração no apoio (F_{Sd}) é necessário colocar uma armadura, a ancorar no apoio $(A_{s,anc})$:

$$A_{s,anc} = \frac{F_{Sd}}{f_{yd}} = \frac{1}{f_{yd}} \left(\frac{a_{\ell}}{d} V_{Sd} + N_{Sd} \right)$$


Se a força normal for nula $(N_{Sd} = 0)$:


$$A_{s,anc} = \frac{a_{\ell}}{d} \, \frac{V_{Sd}}{f_{yd}}$$

A armadura positiva a ancorar no apoio deve ser composta por no mínimo duas barras da armadura longitudinal, e deve atender:

$$A_{s,anc} \ge \begin{cases} \frac{1}{3} \, A_{s+,v\tilde{a}o} & \text{se } M_{apoio} = 0 \text{ ou negativo de valor } \left| M_{apoio} \right| \le \frac{M_{v\tilde{a}o}}{2} \\ \frac{1}{4} \, A_{s+,v\tilde{a}o} & \text{se } M_{apoio} = \text{negativo e de valor } \left| M_{apoio} \right| > \frac{M_{v\tilde{a}o}}{2} \end{cases}$$

$$\frac{1}{3}A_{s+,v\tilde{a}o}$$

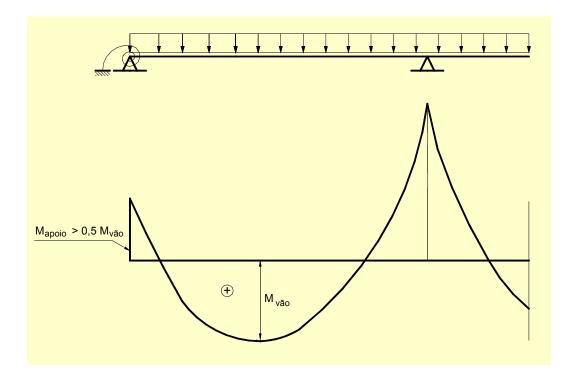


Figura 36 – Armadura mínima a ancorar no apoio extremo de vigas.

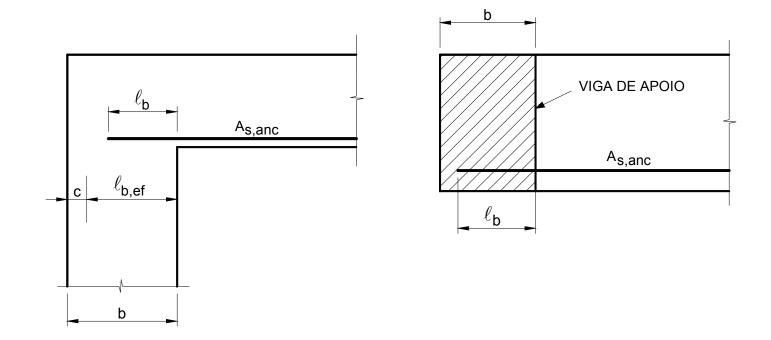
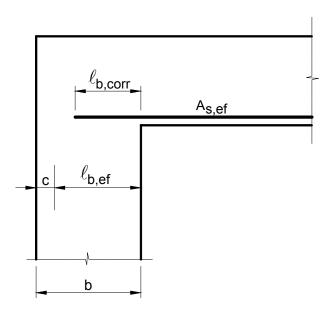



Figura 38 – Ancoragem reta da armadura longitudinal calculada segundo o comprimento de ancoragem básico nos apoios extremos.

$$\ell_{b,corr} = \ell_b \frac{A_{s,anc}}{A_{s,ef}}$$

$$\ell_{b,corr} \ge \ell_{b,min} \ge \begin{cases} r + 5,5 \, \phi \\ 6 \, cm \end{cases}$$

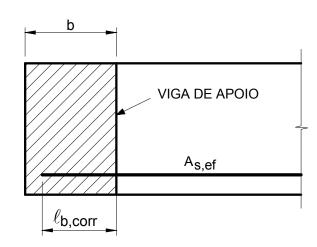


Figura 39 – Correção do comprimento de ancoragem básico para comprimento de ancoragem corrigido em função de diferenças entre a armadura calculada e a armadura efetiva.

$$\ell_{\text{b,gancho}} = 0.7 \ \ell_{\text{b}} \ \frac{A_{\text{s,anc}}}{A_{\text{s,ef}}} \quad ou \quad \ell_{\text{b,gancho}} = 0.7 \ \ell_{\text{b,corr}} \ge \begin{cases} r + 5.5 \ \phi \\ 6 \ \text{cm} \end{cases}$$

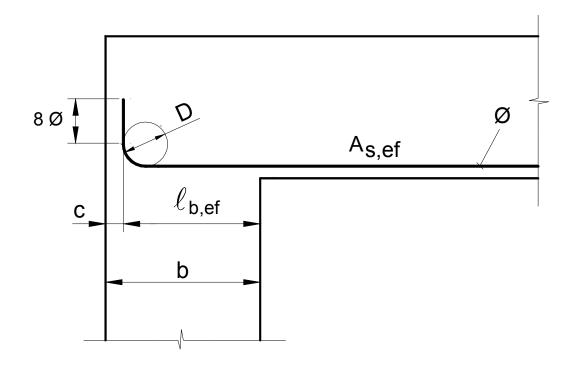


Figura 40 – Ancoragem com gancho quando o comprimento de ancoragem efetivo do apoio é menor que o comprimento de ancoragem reto.

$$A_{s,corr} = \frac{0.7 \, \ell_b}{\ell_{b,ef}} A_{s,anc}$$

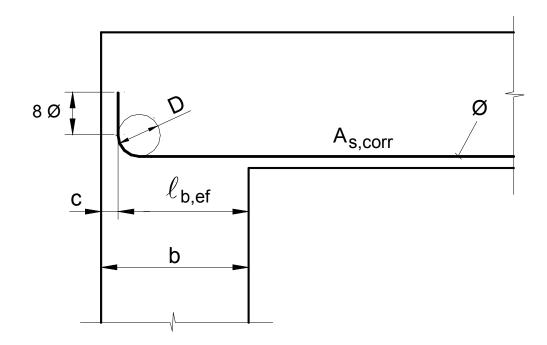


Figura 41 – Acréscimo de armadura longitudinal ancorada no apoio para $A_{s,corr}$ quando o comprimento de ancoragem efetivo do apoio é menor que 68 comprimento de ancoragem com gancho.

$$A_{s,gr} = A_{s,corr} - A_{s,ef}$$

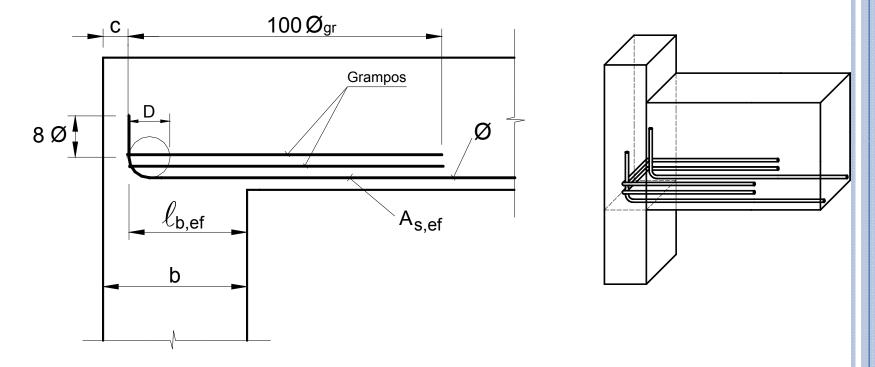


Figura 42 – Ancoragem em apoio extremo com a utilização de grampos e armadura longitudinal efetiva com gancho.

7.3.3 APOIO INTERMEDIÁRIO DE VIGAS CONTÍNUAS

$$A_{s,anc} \ge \begin{cases} \frac{1}{3} A_{s+,v\tilde{a}o} & \text{se } M_{apoio} = 0 \text{ ou negativo de valor } \left| M_{apoio} \right| \le \frac{M_{v\tilde{a}o}}{2} \\ \frac{1}{4} A_{s+,v\tilde{a}o} & \text{se } M_{apoio} = \text{negativo e de valor } \left| M_{apoio} \right| > \frac{M_{v\tilde{a}o}}{2} \end{cases}$$

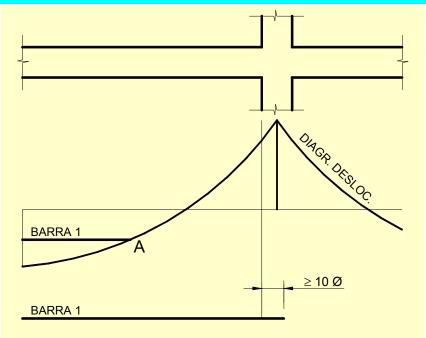


Figura 44 - Ancoragem da armadura longitudinal em apoios intermediários com o ponto A fora do apoio.

7.3.4 Ancoragem de Armadura Negativa em Apoios Extremos

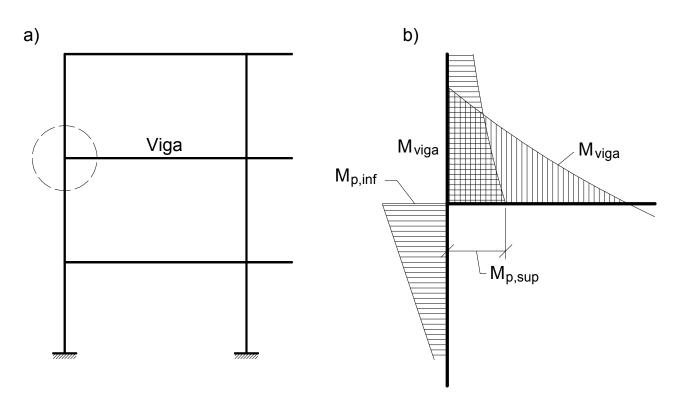


Figura 45 – Momentos fletores em nó extremo de pórtico. (Leonhardt e Mönnig, 1982).

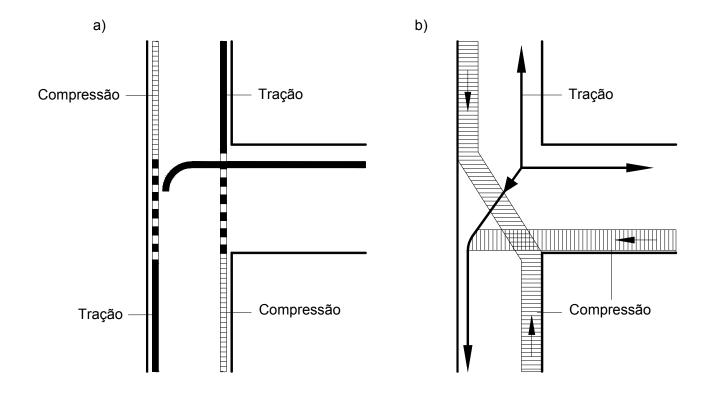


Figura 46 – Direção das tensões de compressão e tração em nó extremo de pórtico (Leonhardt e Mönnig, 1982).

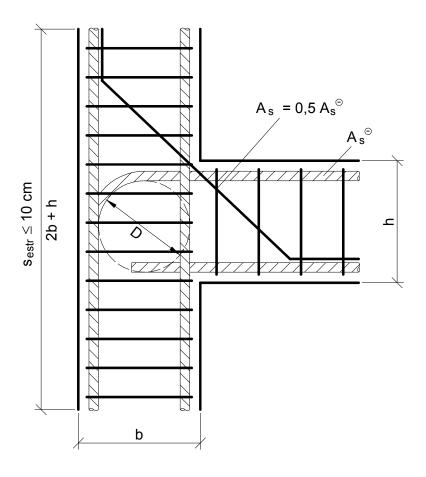


Figura 47 – Detalhamento indicado por LEONHARDT e MÖNNIG (1982) para a armadura negativa da viga em nós de pórtico.

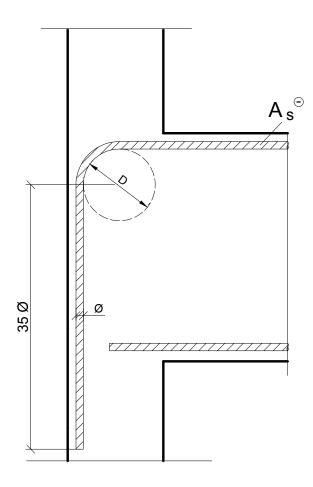


Figura 48 – Comprimento do gancho da armadura negativa dentro do pilar, conforme LEONHARDT e MÖNNIG (1982).