

MATEMÁTICA FINANCEIRA

Juro (J)

- Em princípio, uma unidade monetária hoje é preferível à mesma unidade monetária disponível amanhã.
- Postergar uma entrada de caixa (recebimento) por certo tempo envolve um sacrifício, o qual deve ser pago mediante uma recompensa, definida pelos juros.

Juro (J)

- São os juros que efetivamente induzem o adiamento do consumo, permitindo a formação de poupanças e de novos investimentos na economia.

$\underline{Juro}\left(J\right)$

Os juros devem ser eficientes de maneira a remunerar:

- o risco envolvido na operação
- a perda do poder de compra (inflação)
- o custo de oportunidade

Juro (J)

- Outras denominações para juro são rendimento do capital, ganho sobre o capital ou remuneração do capital.

Capital Inicial (C₀)

Capital pode ser definido como sendo a quantia inicial que se tem ou que se recebe.

Outras denominações para capital inicial são **capital** (C), **principal** (P), **valor presente** (VP), valor inicial, valor aplicado ou depósito inicial.

Montante (M ou S)

Montante é o resultado total que se obtém da aplicação do capital, ou seja, é quanto se recebe ou se paga pelo "empréstimo" do capital.

O montante também é chamado de **capital final** (C_t), **valor futuro** (VF), valor de resgate, "capital + juros", valor final ou valor capitalizado.

Período (t ou n)

Período é definido como sendo o espaço de tempo pelo qual o capital ficou aplicado. Este dado vem representado por um número de períodos que podem ser, por exemplo, dias, meses, trimestres ou anos.

Representamos o número de períodos pela letra **n**, mas ele também pode ser identificado pela letra **t**, de tempo.

Taxa de Juros (i ou r)

- A taxa de juros é o coeficiente que determina o valor do juro, isto é, a remuneração do fator capital utilizado durante certo período de tempo.
- As taxas de juros se referem sempre a uma unidade de tempo (mês, semestre, ano, etc.) e podem ser representadas equivalentemente de duas maneiras: taxa percentual e taxa unitária.
 - A notação i vem do inglês *interest* (taxa).

Conceitos Fundamentais da Matemática <u>Financeira</u> Taxa Percentual

- A taxa percentual se refere aos "centos" do capital, ou seja, o valor dos juros para cada centésima parte do capital.

Por exemplo, um capital de R\$ 1.000,00 aplicado a 20% ao ano rende de juros ao final deste período:

$$Juro = \frac{R\$ 1.000,00}{100} \times 20$$

- O capital de R\$ 1.000,00 tem dez centos. Como cada um deles rende 20, a remuneração total da aplicação no período é, portanto, de R\$ 200,00.

 $Juro = R$ 10,00 \times 20 = R$ 200,00$

Conceitos Fundamentais da Matemática Financeira Taxa Unitária

- A taxa unitária centra-se na unidade de capital. Reflete o rendimento de cada unidade de capital em certo período de tempo.
- No exemplo acima, a taxa percentual de 20% ao ano indica um rendimento de 0,20~(20% = 20/100) por unidade de capital aplicada, ou \overline{a} : **\frac{1.000,00}{100} \times \frac{1}{100}

 $Juro = R$ 1.000,00 \times 0,20 = R$ 200,00$

EXEMPLOS DE TAXA DE JUROS				
Forma PERCENTUAL	Para transformar na forma unitária	Forma UNITÁRIA		
20% ao ano	20/100	0,2 ao ano		
6% ao semestre	6/100	0,06 ao semestre		
2% ao mês	2/100	0,02 ao mês		
0,3% ao dia	0,3/100	0,003 ao dia		

Inversamente, para transformar uma taxa unitária em sua forma percentual deve-se multiplicá-la por 100.

Representação Gráfica dos Conceitos Fundamentais da Matemática Financeira

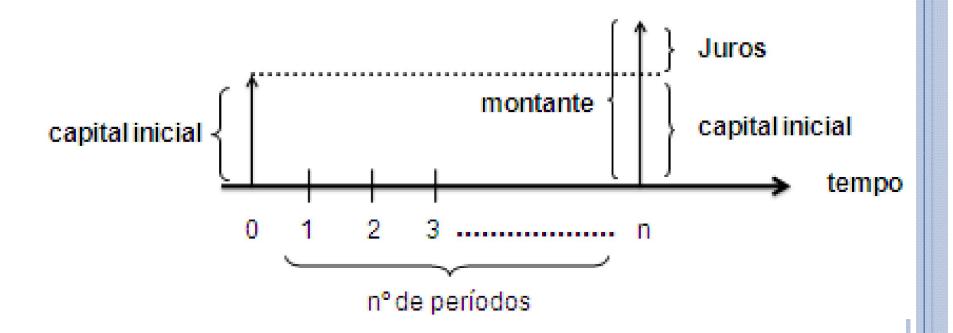
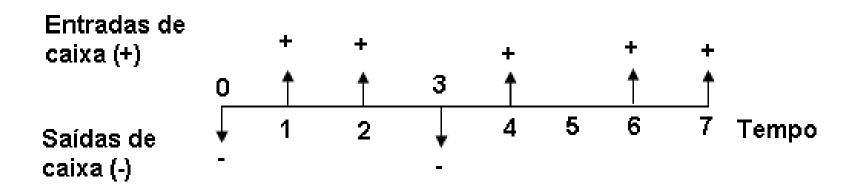


Diagrama do Fluxo de Caixa



CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

Regras Básicas

- Nas fórmulas de matemática financeira, tanto o prazo da operação como a taxa de juros devem necessariamente estar expressos na mesma unidade de tempo.
- Os critérios de transformação do prazo e da taxa para a mesma unidade de tempo podem ser efetuados através das regras de juros simples (média aritmética) e de juros compostos (média geométrica), dependendo do regime de capitalização definido para a operação.

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

Critérios de capitalização dos juros

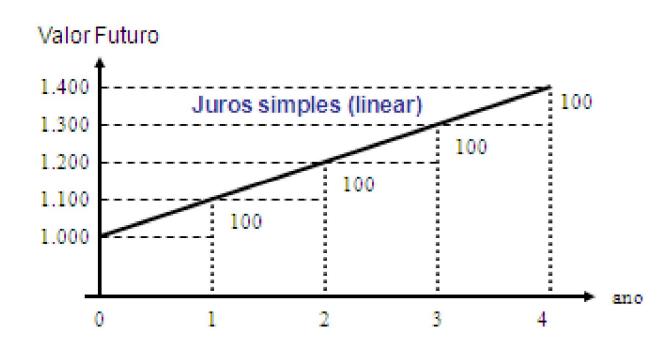
Os critérios (regras) de capitalização demonstram como os juros são transformados e sucessivamente incorporados ao capital no decorrer do tempo. Nesta conceituação podem ser identificados dois regimes de capitalização dos juros: **simples** (ou linear) e **composto** (ou exponencial).

Conceitos Fundamentais da Matemática Capitalização simplificamesis emples)

EXEMPLO

Suponha um indivíduo que deposita R\$1.000,00 em um banco que lhe promete juros simples de 10% a.a. Qual será seu saldo ao final de 4 anos?

Ano	Saldo inicial	Juros	Saldo final
1	1.000	0,1 x 1.000 = 100	1.100
2	1.100	0,1 x 1.000 = 100	1.200
3	1.200	0,1 x 1.000 = 100	1.300
4	1.300	0,1 x 1.000 = 100	1.400



CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

- O regime de capitalização simples comporta-se como se fosse uma progressão aritmética (PA), crescendo os juros de forma linear ao longo do tempo. Neste critério, os juros apenas incidem sobre o capital inicial da operação (aplicação ou empréstimo), não se registrando juros sobre o saldo dos juros acumulados.

REGIME DE CAPITALIZAÇÃO SIMPLES EXEMPLO (CONTINUAÇÃO)

- Os juros, por incidirem exclusivamente sobre o capital inicial de R\$ 1.000,00, apresentam valores idênticos ao final de cada ano $(0,10 \times R$ 1.000,00 = R$ 100,00)$;
- Em conseqüência, o crescimento dos juros no tempo é linear (no exemplo, cresce R\$ 100,00 por ano), revelando um comportamento idêntico a uma progressão aritmética. Os juros totais da operação atingem, nos 5 anos, R\$ 500,00;
- Se os juros simples, ainda, não forem pagos ao final de cada ano, a remuneração do capital emprestado somente se opera pelo seu valor inicial (R\$ 1.000,00), não ocorrendo remuneração sobre os juros que se formam no período.

REGIME DE CAPITALIZAÇÃO SIMPLES EXEMPLO (CONTINUAÇÃO)

- Como os juros variam linearmente no tempo, a apuração do custo total da dívida no prazo contratado é processada simplesmente pela multiplicação do número de anos pela taxa anual, isto é: 5 anos x 10% ao ano = 50% para 5 anos.
- Se desejar converter essa taxa anual para mês, por exemplo, basta dividir a taxa anual por 12, isto é: 10% ao ano/12 meses = 0,8333% ao mês, e assim por diante.

Capitalização simples (Juros simples) Conceitos Fundamentais da Matemática Financeira

Cálculo dos Juros (J):

$$J = VP \times i \times n$$

J = valor dos juros; i = taxa de juros unitária

 \mathbf{VP} = valor presente; e \mathbf{n} = prazo

<u>Cálculo do Valor Futuro</u> (VF):

$$\mathbf{VF} = \mathbf{VP} + \mathbf{J}$$

$$VF = VP \times (1 + i \times n)$$

Nota) Da fórmula acima, temos que:

$$VP = \frac{VF}{(1+i \times n)}$$

EXEMPLO

Uma pessoa aplica R\$ 18.000,00 à taxa de 1,5% ao mês durante 8 meses. Determinar o valor acumulado ao final deste período.

Solução:

VP = R\$ 18.000,00

i = 1,5% ao mês (Taxa unitária igual 0,015 a.m.)

n = 8 meses

VF = M = ?

 $M = 18.000,00 \times (1 + 0,015 \times 8)$

 $M = 18.000,00 \times 1,12 = R$ 20.160,00$

EXEMPLO

Uma dívida de R\$ 900.000,00 irá vencer em 4 meses. O credor está oferecendo um desconto de 7% ao mês caso o devedor deseje antecipar o pagamento para hoje. Calcular o valor que o devedor pagaria caso antecipasse a liquidação da dívida.

Solução:

$$M = R$ 900.000,00$$

$$n = 4 \text{ meses}$$

$$i = 7\%$$
 ao mês $(0,07)$

$$C = VP = ?$$

$$C = \frac{M}{(1+i \times n)} \qquad C = \frac{900.000,00}{(1+0,07\times 4)} = \frac{900.000,00}{1,28} = 703.125,00$$

REGIME DE CAPITALIZAÇÃO SIMPLES TAXA PROPORCIONAL E TAXA EQUIVALENTE

- Toda operação envolve dois prazos: (1) o prazo a que se refere a taxa de juros; e (2) o prazo de capitalização (ocorrência) dos juros.
- É necessário para o uso das fórmulas de matemática financeira expressar esses prazos diferentes na mesma base de tempo.
- No regime de juros simples, diante de sua própria natureza linear, esta transformação é processada pela denominada taxa proporcional de juros, também chamada de taxa linear. Essa taxa proporcional é obtida da divisão entre a taxa de juros considerada na operação e o número de vezes em que ocorrerão os juros (quantidade de períodos de capitalização).

REGIME DE CAPITALIZAÇÃO SIMPLES TAXA PROPORCIONAL E TAXA EQUIVALENTE

Exemplo

Calcular a taxa anual proporcional a:

- (a) 6% ao mês;
- (b) 10% ao bimestre.

Solução

- a) $i = 6\% \times 12 = 72\%$ ao ano
- b) $i = 10\% \times 6 = 60\%$ ao ano

REGIME DE CAPITALIZAÇÃO SIMPLES TAXA PROPORCIONAL E TAXA EQUIVALENTE

Exemplo

Calcular a taxa de juros semestral proporcional a:

(a) 60% ao ano; (b) 9% ao trimestre.

Solução:

Deve haver uma igualdade entre a razão das taxas e a razão dos períodos a que se referem.

a)
$$i - \frac{60\%}{12} \times 6 - 30\%$$
 a.s., porque $\frac{12}{6} = \frac{60}{i}$

b)
$$i = \frac{9\%}{3} \times 6 = 18\%$$
 a.s.

Exemplo

Uma instituição financeira oferece a seus clientes uma taxa de rentabilidade de 1,2% a.m., a juros simples. Determinar o valor do rendimento de uma aplicação de R\$10.000,00 efetuada nessa instituição por um prazo de 18 dias.

Solução

VP = 10.000, n = 18 dias , i = 1,2% / 30 = 0,04% a.d.

Rendimento = VF - VP = 10.000,00 x $0,0004 \times 18 = R\$ 72,00$.

NOMENCLATURA

Capital Inicial (**C**₀)

ou

Principal (**P**)

ou

Valor Presente (**VP**)

Capital Final (**C**_t)
ou
Montante (**M** ou **S**)
ou
Valor Futuro (**VF**)

Períodos: **t** ou **n**

Juros ou rentabilidade: *i* ou *r*

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

Regimes de capitalização (continuação)

No Regime de Capitalização composta (juros compostos), os juros de um período são incorporados ao capital para cálculo do período seguinte. Diz-se, assim, que os juros são capitalizados (somados ao capital) e passam a gerar novos juros no período seguinte, resultando no que se denomina "juros sobre juros".

Como os juros de cada período são apurados a partir do valor inicial capitalizado, ou seja, acrescido dos juros acumulados até o período anterior, pode-se inferir que os rendimentos serão crescentes para uma mesma aplicação ou um mesmo investimento.

Conceitos Fundamentais da Matemática Capitalização composita (nurios acompostos)

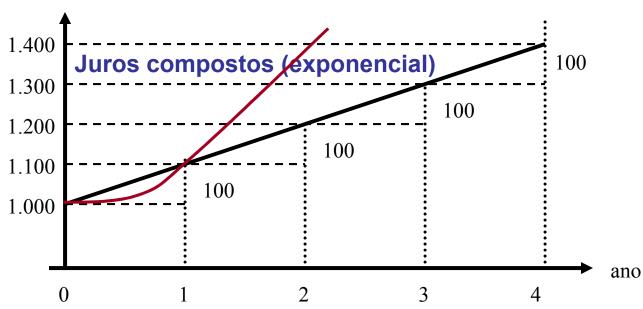
EXEMPLO

Suponha um indivíduo que deposita R\$1.000,00 em um banco que lhe promete juros compostos de 10% a.a. Qual será seu saldo ao final de 4 anos?

Ano	Saldo inicial	Juros	Saldo final
1	1.000,00	0,1 x 1.000 = 100,00	1.100,00
2	1.100,00	0,1 x 1.100 = 110,00	1.210,00
3	1.210,00	0,1 x 1.210 = 121,00	1.331,00
4	1.331,00	0,1 x 1.331 = 133,10	1.464,10

Juros Compostos - Representação Gráfica Exemplo (continuação)

Valor Futuro



$$VF = VP \times (1+i)^{t}$$
$$VF = 1.000 \times (1+0.1)^{t}$$

VF = capital ao final do ano t

i = taxa de juros

VP = capital inicial

Capitalização composta (juros compostos)

- Juros de cada período são calculados sobre o saldo existente no início do respectivo período;
- Juros acumulados ao longo dos períodos, quando retidos pela instituição financeira, são capitalizados e passam a render juros; e
- Crescimento do dinheiro, ao longo do tempo, é exponencial (ou em progressão geométrica)

Capitalização composta (juros compostos) Conceitos Fundamentais da Matemática Financeira

Ao **final de cada período**, o juro obtido nesse período é incorporado ao principal que o produziu e passam os dois, principal mais juro, a render juros no período que segue.

Assim:

$$S_1 = P + J = P + P \times i \times 1 = > S_1 = P \times (1 + i)$$

 $S_2 = S_1 + J2 = S_1 + S_1 \times i \times 1 = S_1 \times (1 + i) = P \times (1 + i)^2$
 $S_3 = P \times (1 + i)^3$ e assim por diante.

A fórmula geral é dada por:

$$S_n = P \times (1 + i)^n$$
 ou $VF = VP \times (1 + i)^n$

EXEMPLO

Determinar o valor acumulado em 24 meses, a uma taxa de 1% a.m., a partir de um principal de R\$ 2.000,00.

Basta aplicar a fórmula

$$VF = VP (1 + i)^n$$

... HP ...

$$VF = 2.000,00(1+0,01)^{24} = 2.539,46$$

Taxas equivalentes – Juros Compostos

$$(1+i_d)^{360} = (1+i_m)^{12} = (1+i_t)^4 = (1+i_s)^2 = (1+i_a)$$

Duas taxas equivalentes, quando aplicadas a um mesmo capital inicial (principal), durante um mesmo período de tempo, produzem o mesmo capital disponível (montante) acumulado ao final daquele período.

TAXA EFETIVA

- Unidade de tempo da taxa coincide com a unidade de tempo dos períodos de capitalização.
 - Exemplos
- (I) 3% a.m. (capitalizados mensalmente);
- (II) 12% a.a. (capitalizados anualmente).

Taxa Nominal

- Unidade de tempo não coincide com a unidade de tempo dos períodos de capitalização.
 - Exemplos
- (I) 12% a.a capitalizados mensalmente
- (II) 24% a.a capitalizados trimestralmente

Taxa Proporcionais - Juros Simples

A taxa nominal tem uma taxa efetiva implícita, que é obtida através de **taxas proporcionais**, a juros simples

$$(i_a) = (2 \times i_s) = (4 \times i_t) = (12 \times i_m) = (360 \times i_d)$$

Ex: 12% a.a capitalizados mensalmente \Rightarrow 1% a.m

24% a.a capitalizados trimestralmente \Rightarrow 6% a.t

Taxas equivalentes – Juros Compostos

$$(1+i_d)^{360} = (1+i_m)^{12} = (1+i_t)^4 = (1+i_s)^2 = (1+i_a)^4$$

Duas taxas equivalentes, quando aplicadas a um mesmo capital inicial (principal), durante um mesmo período de tempo, produzem o mesmo capital disponível (montante) acumulado ao final daquele período.

EXEMPLO

Quais as taxas de juros compostos mensal e trimestral equivalentes a 25% ao ano?

Solução:

a) Taxa de juros equivalente mensal

$$i = 25\%$$
 a.a.

q = 1 ano (12 meses)

$$\begin{split} &i_{12}=\sqrt[12]{1+0,\!25}-1\\ &i_{12}=\sqrt[12]{1,\!25}-1=1,\!877\% \text{ a.m.} \end{split}$$

b) Taxa de juros equivalente trimestralq = 1 ano (4 trimestres)

$$i_4 = \sqrt[4]{1 + 0.25} - 1$$

 $i_{12} = \sqrt[4]{1.25} - 1 = 5.737\%$ a.m.

EXEMPLO

- Uma taxa é dita <u>nominal</u> quando o prazo de capitalização dos juros (ou seja, período de formação e incorporação dos juros ao principal) não é o mesmo daquele definido para a taxa de juros.

Exemplo) Seja a taxa nominal de juros de 36% ao ano capitalizada mensalmente. Os prazos não são coincidentes. O prazo de capitalização é de um mês e o prazo a que se refere a taxa de juros igual a um ano (12 meses). A taxa por período de capitalização é de 36%/12 = 3% ao mês (taxa proporcional ou linear).

Taxa efetiva de juros: $_{i_f} = \left(1 + \frac{0,36}{12}\right)^{12} - 1 = 42,6\%$

Nota) Quando os prazos forem coincidentes (prazo da taxa e de formação dos juros), a representação da taxa de juros é abreviada. Por exemplo, a expressão única "10% a.a." indica que os juros são também capitalizados em termos anuais.

Nomenclatura de Taxa de Juros

Taxa Efetiva x Taxa Nominal

Caderneta de Poupança: 6% a.a. ou 0,5 % ao mês?

$$C(12) = C_0(1,005)^{12}$$

= $C_0(1,0617)$ 6,17%
a.a.

Taxa nominal: 6 % a.a. capitalizados mensalmente

Taxa efetiva mensal: 0,5% a.m.

Taxa efetiva anual: 6,17% a.a.

As três taxas acima são Equivalentes pois quando aplicadas ao mesmo capital inicial, durante um mesmo prazo, produzêm o mesmo montante.

DESCONTO EM JUROS SIMPLES

Desconto "por fora" (Desconto Bancário ou comercial): calculado multiplicando-se o Valor Futuro pela taxa de juros e pelo número de períodos.

$$\mathbf{VP} = \mathbf{VF} \mathbf{x} (1 - \mathbf{d} \mathbf{x} \mathbf{n})$$

Desconto "por dentro" (Desconto Racional): calculado multiplicando-se o Valor Presente pela taxa de juros e pelo número de períodos.

$$\mathbf{VF} = \mathbf{VP} \times (\mathbf{1} + \mathbf{d} \times \mathbf{n})$$

EXEMPLO

Determinar o valor da taxa mensal de desconto "por dentro" e "por fora" usada numa operação de desconto de 60 dias, de uma duplicata com valor de resgate de R\$ 10.000,00 e com valor de principal igual a R\$ 9.750,00.

$$VP = 9.750; VF = 10.000; n = 60 dias (2 meses)$$

$$VF = VP \times (1 + d \times n)$$
 $VP = VF \times (1 - d \times n)$

EXEMPLO

Você tem uma aplicação para resgate de R\$ 1.500,00 em 3 meses e deseja antecipar a retirada. Se a taxa de Desconto Bancário (Racional) é de 8% ao mês, qual o valor resgatado na data de hoje?

Resolução:

i) Desconto bancário

Desconto = $0.08 \times 3 \times 1500 = 360$ Valor Regatado = R\$ 1500 - 360

ii) Desconto racional

$$VP = 1500/(1+0.08 \times 3) = 1209.67$$

Desconto = 1209.67 x 3 x 0.08 = 290.32

DESCONTO EM JUROS COMPOSTOS

Desconto "por fora" (Desconto Bancário ou comercial): raramente aplicado no Brasil.

$$VP = VF \times (1 - d)^n$$

Desconto "por dentro" (Desconto Racional): é o mais aplicado na prática.

$$\frac{VP}{(1+d)^n}$$

EXEMPLO

Você tem uma aplicação para resgate de R\$ 1.500,00 em 3 meses e deseja antecipar a retirada. Se o regime de Desconto Composto é utilizado e a taxa é de 8% ao mês, qual o valor resgatado na data de hoje?

Resolução

$$VP = VF / (1 + j)^n = 1500 / (1,08)^3$$

Valor Regatado = R\$ 1.190,75

EXERCÍCIO EXTRA

Dois meses antes do seu vencimento, um título de valor nominal N sofrerá desconto. Se o desconto for racional composto e a taxa utilizada for de 20% ao mês, o valor do desconto será igual a d. Se o desconto for comercial composto, qual deverá ser a taxa mensal de desconto para que o valor do desconto seja o mesmo?

- (A) 83,3% (B) 69,1% (C) 42,8% (D) 20,0%
- (E) 16,7%

- Até agora tratamos o juros compostos em pagamentos simples, isto é, uma entrada e uma saída de caixa.
- O que acontece quando temos várias entradas (ou saídas) de caixa?
 - É o que vamos ver a seguir.

SÉRIES UNIFORMES EXEMPLO

- Suponha que lhe seja oferecido um bem que custa 4 prestações mensais de R\$1.000,00. Qual o valor presente deste bem, supondo que a taxa de juros praticada no mercado é igual a 10%?

 $(1 + i)^{-3}$

$$VP = R \times (1 + i)^{-1} + R \times (1 + i)^{-2} + R \times (1 + i)^{-3} + R \times (1 + i)^{-4}, \text{ multiplicando por } (1 + i)$$

$$VP \times (1 + i) = R + R \times (1 + i)^{-1} + R \times (1 + i)^{-2} + R \times (1 + i)^$$

• Diminuindo a segunda equação da primeira, temos:

$$VP \times (1 + i) - VP = R - R \times (1 + i)^{-4}$$
, temos:

$$VP = R\left(\frac{(1+i)^4 - 1}{i(1+i)^4}\right)$$

Generalizando

$$VP = R \times \left(\frac{(1+i)^n - 1}{i \times (1+i)^n}\right)$$

Exemplo

Uma pessoa obteve empréstimo de R\$ 10.000,00, para ser pago em 8 prestações iguais, com juro composto de 8% ao mês. Qual o valor de cada prestação?

 $1000 = P \times \left(\frac{(1,08)^8 - 1}{0,08 \times (1,08)^8} \right)$

resolvendo P = R\$ 1.740,10

Capitalização

Por dedução semelhante a anterior:

$$VF = PGTO \times \left(\frac{(1+i)^{n}-1}{i}\right)$$

Calcule quanto terei no fim de um ano, se deposito R\$ 500,00 durante 11 meses, a juros compostos de 2%.

EXERCÍCIOS

Exercícios: 5; 13; 17; 26.

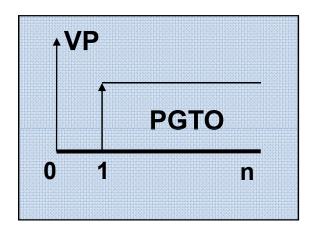
PERPETUIDADES

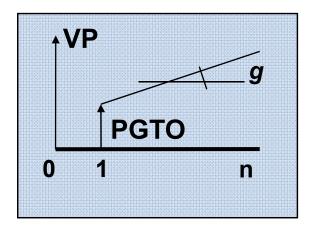
Esta série ou anuidade se chama assim porque os fluxos de caixa são perpétuos.

Por esta razão, obviamente, não podemos avaliá-las descontando todos os fluxos de caixa e nem tão pouco aplicando a fórmula diretamente. Felizmente, a avaliação é extremamente simples, e isto pode ser visto com um pouquinho de matemática.

Perpetuidades

1) Séries de pagamentos uniformes e infinitas





Perpetuidades

Exemplo 1

Uma loja comercial tem apresentado receita média anual de R\$ 1.500.000,00. Sabendo-se que possui potencial de crescer em média 5% ao ano o faturamento no futuro, qual o valor do negócio para uma taxa de juros de 10%?

Exemplo 2

O pedágio de uma rodovia estadual arrecada em média \$ 200.000/mês. Calcular o valor presente dessas rendas, considerando um custo de capital de 2% a.m..

Perpetuidades

Exemplo 3

Para fazer uma doação, que paga \$100.000 por ano, para sempre, quanto dinheiro deve ser reservado hoje se a taxa de juros é 10%?

Exemplo 4

A Companhia de Seguro Bob's Life Co. está tentando lhe vender uma apólice que renderia a você e a seus herdeiros \$ 5.000 por ano, para sempre. Se a taxa de retorno exigida nesse investimento igual a 8%, quanto você pagaria pela apólice?

Sistemas de amortização

- O reembolso de um empréstimo ou financiamento consiste no pagamento de **prestações** em datas predeterminadas. Estas prestações são compostas de duas partes:
- **Amortização**: é a parte da prestação que está abatendo o valor inicial do empréstimo sem o cômputo do juro, ou seja, é a devolução do principal.
- **Juro**: é a parte da prestação que remunera o "dono do dinheiro" pelo empréstimo, ou seja, é o que se cobra pelo "aluguel do dinheiro".

Sistemas de amortização

Outros Conceitos

- Credor ou Mutuante: é aquele que dá o empréstimo;
- **Devedor** ou **Mutuário**: é aquele que recebe o empréstimo;
- Taxa de Juros: é a taxa acordada entre as partes. É sempre calculada sobre o saldo devedor; e
- Carência: diferimento na data convencional do início dos pagamentos.

Sistemas de amortização

Outros Conceitos (continuação)

- **Prazo de Amortização**: é o intervalo de tempo durante o qual são pagas as amortizações
- **Parcelas de Amortização**: correspondem às parcelas de devolução do principal

Sistema Francês de Amortização ou Tabela (Sistema) *Price*

- As prestações são iguais e em sequência, ou seja, é uma série uniforme de pagamentos.
- Nesse sistema, o juro é decrescente e a amortização, crescente.
- A cota de amortização na última prestação é igual ao saldo devedor anterior.
- O saldo devedor em um determinado momento é o valor atual da série, que corresponde aos pagamentos que são devidos.

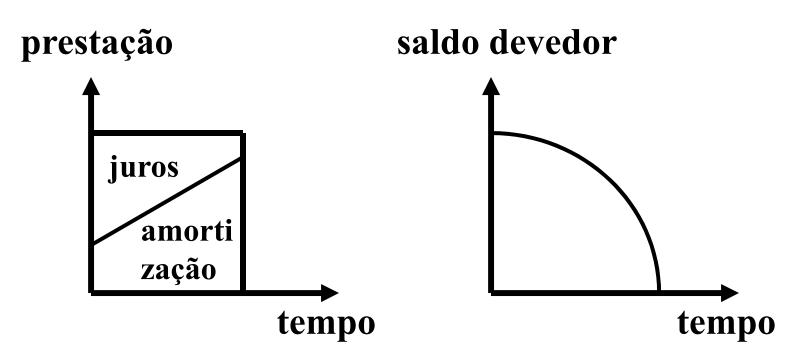
Sistema Francês de Amortização ou Tabela (Sistema) *Price*

- É utilizado na compra à prazo de bens de consumo (crédito direto ao consumidor).

Nota) Alguns autores consideram a Tabela *Price* (Sistema *Price*) como um caso particular do Sistema Francês de Amortização, em que a única diferença é que a taxa de juros da operação é nominal. Dessa forma, o cálculo da Tabela *Price* se inicia com o cálculo da taxa efetiva da operação. As demais etapas são idênticas àquelas do Sistema Francês.

Sistema Francês de Amortização

- Representação das prestações:



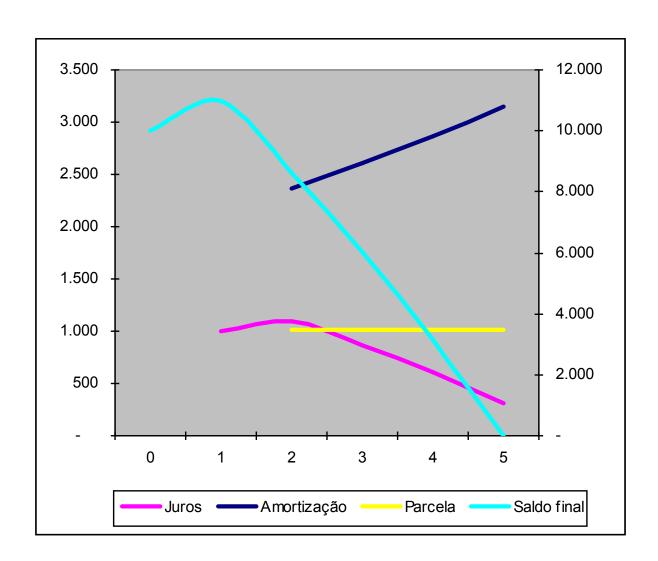
Per.	Saldo inicial	Juros	Amort	Parcela	Saldo final
n		j	а	р	
0		-	-	-	10.000
1	10.000	+10.000*	-	-	+10.000
		10%			+10.000*10%
2					
3					
4					
5					66

Per.	Saldo inicial	Juros	Amort	Parcela	Saldo final
n	SI	j	а	р	SF
0		-	-	-	10.000
1	10.000	11.000	-	-	11.000
2	SF	SI*j	+p-j	PMT	SI-a
3				PMT	
4				PMT	
5				PMT	67

Per.	Saldo inicial	Juros	Amort	Parcela	Saldo final
		Julos			
n		J	а	р	
0		-	-	-	10.000
1	10.000	1.000	-	-	11.000
2	11.000	1.100	2.370	3.470	8.630
3	SF	SI*j	+p-j	3.470	+SI-a
		,			
4				3.470	
5				3.470	68

Per.	Saldo inicial	Juros	Amort	Parcela	Saldo final
n		j	а	р	
0		-	-	-	10.000
1	10.000	1.000	-	-	11.000
2	11.000	1.100	2.370	3.470	8.630
3	8.630	863	2.607	3.470	6.023
4	SF	SI*j	+p-j	3.470	+SI-a
5				3.470	69

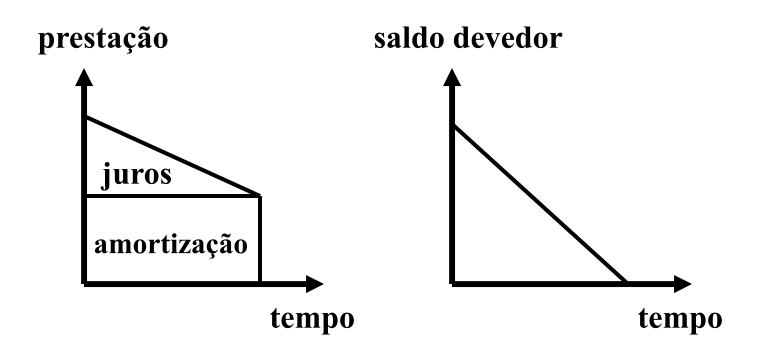
	_				
Per.	Saldo inicial	Juros	Amort	Parcela	Saldo final
n		j	а	р	
0		-	-	-	10.000
1	10.000	1.000	-	-	11.000
2	11.000	1.100	2.370	3.470	8.630
3	8.630	863	2.607	3.470	6.023
4	6.023	602	2.868	3.470	3.155
5	3.155	315	3.155	3.470	0 70



Sistema de amortização constante (SAC) ou Sistema Hamburguês de Amortização

- A amortização é constante e é igual ao valor do empréstimo dividido pelo número de prestações.
- Nesse sistema, a prestação e o saldo devedor decrescem em progressão aritmética.
 - Utilizado em financiamentos a longo prazo.
- Popularizado pelo Sistema Financeiro de Habitação (SFH)

- Representação das prestações:

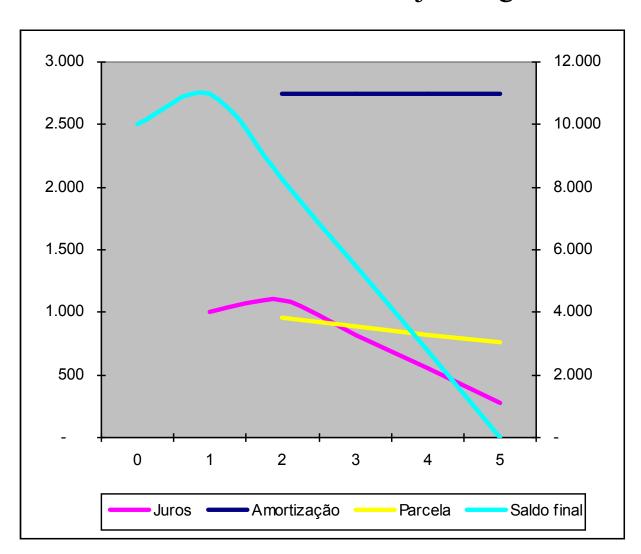


Per.	Saldo inicial	Juros	Amort	Parcela	Saldo final
n		j	а	р	
0		-	-	-	10.000
1	10.000	1.000	-	-	11.000
2	11.000	SI*j	+SI/n	+j+a	+SI-a
3	+SI-a		+SI/n		+SI-2a
4	+SI-2a		+SI/n		+SI-3a
5	+SI-3a		+SI/n		+SI-4a 74

Per.	Saldo inicial	Juros	Amort	Parcela	Saldo final
		JU103	Amort	i arccia	Gaido III ai
n		j	а	р	
0		-	-	-	10.000
1	10.000	1.000	-	-	11.000
2	11.000	1.100	2.750	3.850	8.250
3	8.250	+SI*j	2.750	+j+a	5.500
4	5.500		2.750		2.750
5	2.750		2.750		0 75

Ex. Uma máquina custa R\$ 10.000 com financiamento em até 5 anos, carência de principal e juros no primeiro ano e parcelas anuais calculadas com base em uma taxa de juros igual a 10% a.a.

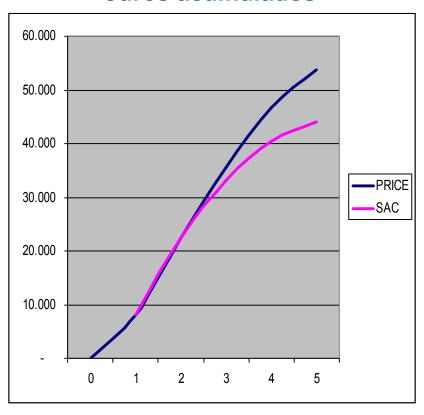
Per.	Saldo inicial	Juros	Amort	Parcela	Saldo final
n		j	а	р	
0		-	-	-	10.000
1	10.000	1.000	-	-	11.000
2	11.000	1.100	2.750	3.850	8.250
3	8.250	825	2.750	3.575	5.500
4	5.500	550	2.750	3.300	2.750
5	2.750	275	2.750	3.025	0 76



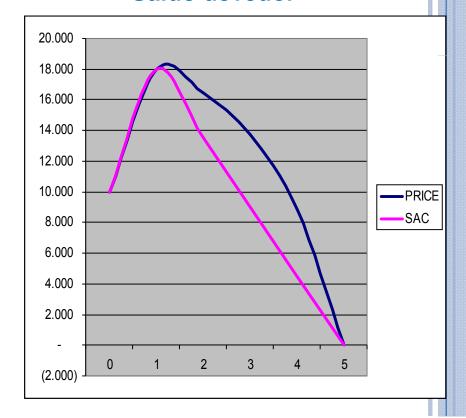
Sistemas de Amortização

- O sistema Price expõe mais o financiador ao risco de crédito;
- ➢O volume de juros recebidos é maior no sistema Price

Juros acumulados



Saldo devedor



Sistema de Amortização Misto (SAM)

- As prestações correspondem à média aritmética das prestações calculadas pelo Sistema Francês e pelo SAC.

Sistema de Americano de Amortização

- Nesse sistema, o devedor obriga-se a devolver o principal em uma só parcela, no final do prazo concedido. Os juros podem ser pagos durante a carência ou capitalizados e devolvidos juntamente com o principal.
- Todo o prazo do empréstimo é considerado como carência e a amortização, portanto, é feita no último pagamento. A forma de pagamento dos juros define as duas modalidades do Sistema Americano.