

Cinética Química

"Cinética química

é o estudo da <u>velocidade</u> das reações, de como a <u>velocidade</u> varia em função das diferentes condições "

cres que afetam a velocidade da reação:

· Concentração dos reagentes.

Geralmente quanto mais concentrado mais rápido é a velocidade.

· Temperatura.

Normalmente a velocidade das reações aumenta com o aumento da temperatura.

Estado físico dos reagentes.

Normalmente a velocidade segue esta ordem:

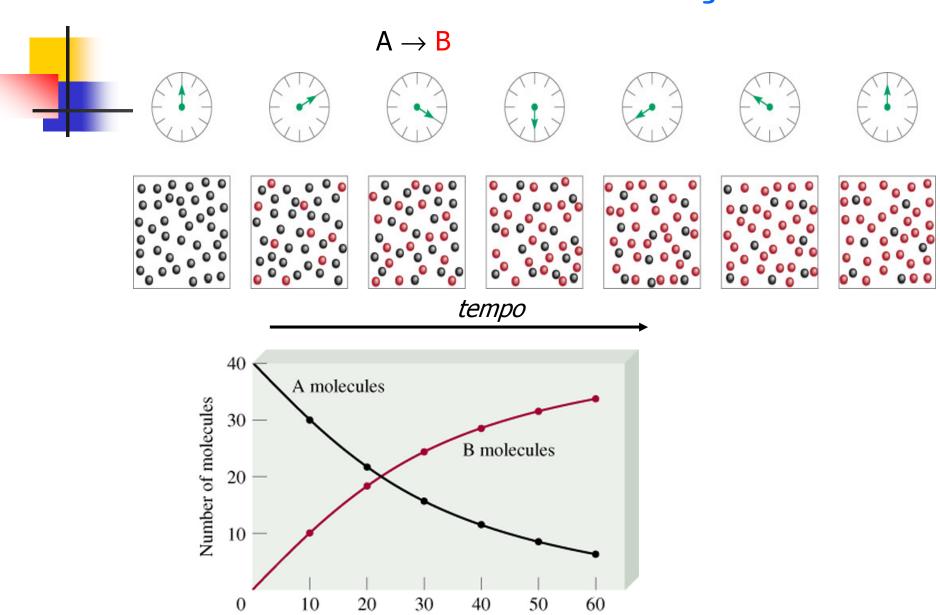
gases > líquidos > sólidos.

Devido ao aumento da superfície específica;

· Presença (concentração e forma física) de um **catalizador ou inibidor**. Catalizador acelera e inibidor diminui a velocidade de uma reação.

Luz.

A presença de luz de certo comprimento de onda também pode acelerar certas reações químicas.


VELOCIDADE DE UMA REAÇÃO QUÍMICA

"Velocidade de uma reação química é o aumento na concentração molar do produto por unidade de tempo ou o decréscimo na concentração molar do reagente na unidade de tempo"

Unidade: mol/dm³ = Concentração Molar []

Velocidade: modificação que ocorre num dado intervalo de tempo

VELOCIDADE DE UMA REAÇÃO

t(s)

CÁLCULO DA VELOCIDADE MÉDIA DE UMA REAÇÃO

$$=\frac{[B] \text{ em } t_2 - [B] \text{ em } t_1}{t_2 - t_1} = \frac{\Delta[B]}{\Delta t}$$

Velocidade média em relação a A
$$_{=}$$
 - $\frac{\Delta[A]}{\Delta t}$

CÁLCULO DA VELOCIDADE MÉDIA DE UMA REAÇÃO

Supondo que:

Para t = 0 (início da reacção) há 1,00 mol A (100 esferas pretas) e B não está presente. Para t = 20 min, existem 0,54 mol A e 0,46 mol B

Para t = 40 min, existem 0,20 mol A e 0,80 mol B

A velocidade média da reacção depois de 40 min será

Velocidade média =
$$-\frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$$

Velocidade média =
$$-\frac{(0,20-1,00)}{40} = \frac{(0,80-0)}{40} = 0,20 \text{ M/min}$$

A velocidade média diminui com o tempo

ESTEQUIOMETRIA E VELOCIDADE DE REAÇÃO

No caso geral, para a reação:

$$aA + bB \rightarrow cC + dD$$

A velocidade é dada por:

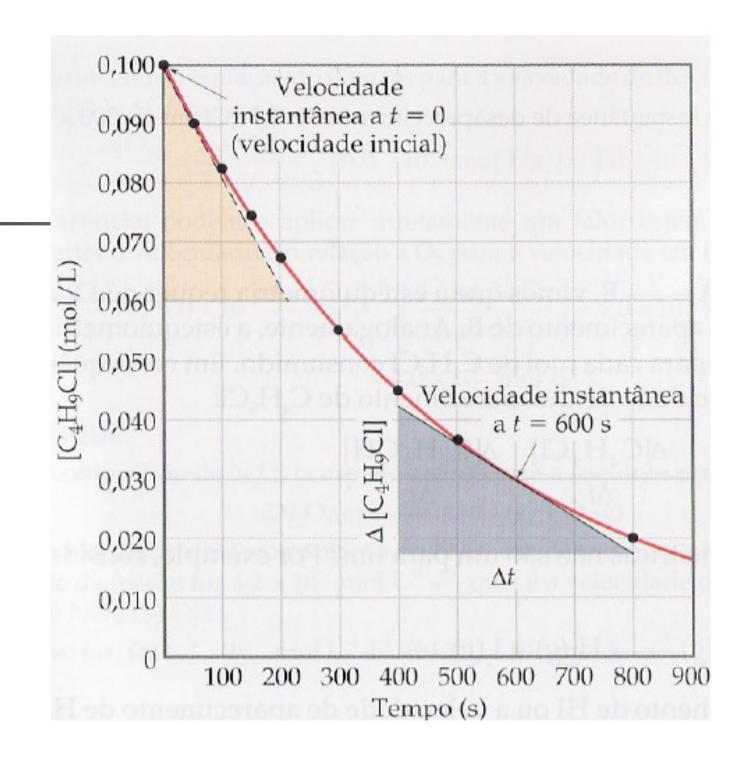
$$veloc.M\acute{e}dia = -\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$$

Consideremos a seguinte reação:

$$2 A \rightarrow B$$

Consomem-se duas moles de A por cada mole de B que se forma, ou seja, a velocidade com que A se consome é o dobro da velocidade de formação de B. Escrevemos a **velocidade da reação** como: $1 \Lambda[A] \Lambda[B] \Lambda[B] \Lambda[B]$

$$velocidade = -\frac{1}{2} \frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t} \Rightarrow -\frac{\Delta[A]}{\Delta t} = 2 \frac{\Delta[B]}{\Delta t}$$


Variação na Velocidade com o Tempo

$$C_4H_8CI_{(aq)} \hspace{0.3cm} + \hspace{0.3cm} H_2O_{(l)} \hspace{0.3cm} \longrightarrow \hspace{0.3cm} C_4H_9OH_{(aq)} \hspace{0.3cm} + \hspace{0.3cm} HCI_{(aq)}$$

Cloreto de butila

alcool butílico

Tempo, t (s)	[C ₄ H ₉ Cl] (mol/L)	Velocidade média (mol L/s)
0,0	0,1000	
50,0	0,0905	1,9 × 10 ⁻⁴
100,0	0,0820	= 1,7 × 10 ⁻⁴
150,0	0,0741	1,6 × 10 ⁻⁴
200,0	0,0671	1,4 × 10 ⁻⁴
300,0	0,0549	1,22 × 10 ⁻⁴
400,0	0,0448	1,01 × 10 ⁻⁴
500,0	0,0368	0,80 × 10 ⁻⁴
800,0	0,0200	0,560 × 10 ⁻⁴

Velocidade de reação

Média # Instantânea

Diz respeito ao que acontece em um intervalo de tempo

Diz respeito a algo que aconteceu tão rápido a ponto de não decorrer

"nenhum" tempo $(t\rightarrow 0)$ e $\Delta[]=0$

$$velocidade = \frac{\Delta[\text{Re}\,agente]}{\Delta t}$$

velocidade = ? instantânea

Velocidade instantânea (ou simplesmente velocidade)

em um instante qualquer, é velocidade média quando o intervalo de tempo tende a zero, ou seja, (t→0). Conforme o intervalo de tempo diminui, a velocidade média tende a um limite, que é a velocidade naquele instante, isto é,

$$v = \lim_{\Delta t \to 0} \frac{\Delta[]}{\Delta t} = \frac{d[]}{dt}$$

d/dt: taxa de variação com o tempo

No caso geral, para a reação:

$$aA + bB \rightarrow cC + dD$$

A velocidade é dada por:

$$velocidade = -\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt}$$

Todas as velocidades são iguais

Equação da velocidade

 Análise da influência da concentração sobre a velocidade da reação.

No caso geral, para a reação:

$$A + 2 B \rightarrow C + D$$

$$-\frac{d[A]}{dt}\alpha[A][B] \qquad -\frac{d[A]}{dt} = k[A][B]$$

k: constante de velocidade

Expressão numérica do efeito dos reagentes e da temperatura sobre a velocidade da reação.

ORDEM DE REAÇÃO

Consideremos a reação geral:

$$aA + bB \rightarrow cC + dD$$

A equação da velocidade assume a forma:

$$Velocidade = k[A]^{x}[B]^{y}$$

- x,y,k determinados experimentalmente
- x e y ordem de uma reação; x é a ordem de A e y é a ordem de B.

Chama-se ordem de uma reacção (ordem global) à soma dos valores das potências a que as concentrações de reagentes se encontram elevadas a equação cinética da reacção

A reação tem ordem global x+y

Equação química I

Equação química II

$$\bullet$$
 H₂ + I₂ \rightarrow 2 HI

$$\blacksquare$$
 H₂ + Br₂ \rightarrow 2 HBr

$$-\frac{d[H_2]}{dt} = k[H_2]^1[I_2]^1 - \frac{d[H_2]}{dt} = k[H_2]^1[Br_2]^2$$

Considere que, não há nenhuma relação entre a estequiometria da equação química e a equação da velocidade.

$$NH_{4}^{+}_{(aq)} + NO_{2}^{-}_{(aq)} \longrightarrow N_{2(g)} + 2H_{2}O_{(l)}$$

Dados de velocidade para a reação dos íons amônio e nitrito em água a 25 °C.

Número do experimento	Concentração inicial de NH ₄ ⁺ (mol/L)	Concentração inicial de NO ₂ ⁻ (mol/L)	Velocidades iniciais observadas (mol L ⁻¹ s ⁻¹)
1	0,0100	0,200	5.4×10^{-7}
2	0,0200	0,200	10,8 × 10 ⁻⁷
3 mkatagraph	0,0400	0,200	$21,5 \times 10^{-7}$
4	0,0600	0,200	$32,3 \times 10^{-7}$
5	0,200	0,0202	10.8×10^{-7}
6	0,200	0,0404	$21,6 \times 10^{-7}$
7	0,200	0,0606	32.4×10^{-7}
8	0,200	0,0808	$43,3 \times 10^{-7}$

LEI DA VELOCIDADE

Determinação a partir da modificação da concentração inicial de um Reagente sobre a velocidade inicial.

[NH ₄ +] Experimentos 1,3	Velocidade da reação	Veloc=k[X] ⁿ	Ordem de ligação
Quadruplicou	Quadruplicou	[NH ₄ +] n = ?	1 ^a
[NO ₂ -] Experimentos 5,7	Velocidade da reação	Veloc=k[X] ⁿ	Ordem de ligação
Triplicou	Triplicou	[NO ₂ -] n = ?	1 ^a

Equação da velocidade:

velocidade = $k [NH_4+] [NO_2^-]$

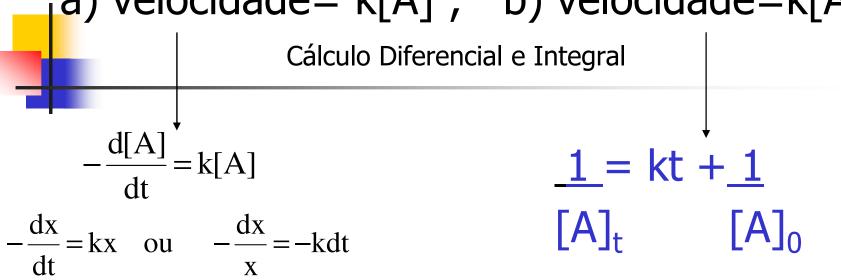
Exercício Proposto

A velocidade inicial da reação hipotética $A + B \longrightarrow C$ foi medida com diferentes concentrações iniciais de A e de B; os resultados foram os seguintes:

Número da Experiência	[A] (M)	[B] (M)	Velocidade Inicial (M/s)	
1	0,100	0,100	4.0×10^{-5}	
2	0,100	0,200	4.0×10^{-5}	
3	0,200	0,100	16.0×10^{-5}	

Com estes dados, determinar (a) a lei de velocidade da reação; (b) a constante de velocidade; (c) a velocidade da reação quando [A] = 0,050 M e [B] = 0,100 M.

Lei da velocidade: = k[A]

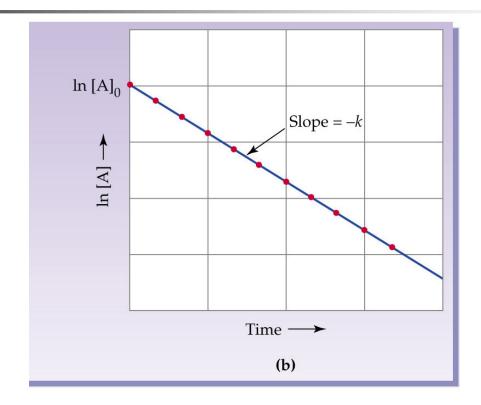

Recurso: Cálculo Diferencial e Integral

 Δ [Reag]₀ x tempo

velocidade= k[A]; velocidade=k[A]²

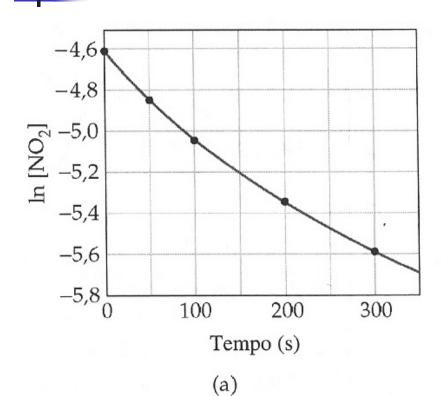
Recurso: Cálculo Diferencial e Integral

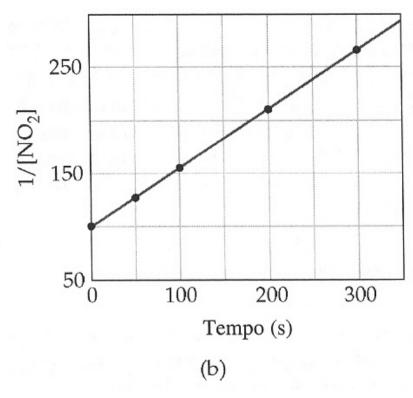
a) velocidade= k[A]; b) velocidade=k[A]²

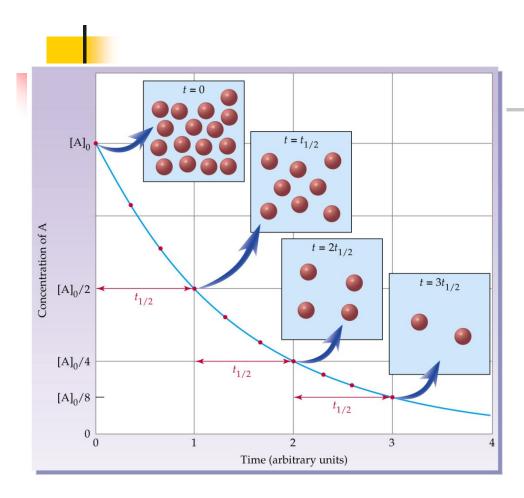


$$\int_{x_0}^{X} \frac{dx}{x} = -\int_{0}^{t} kdt \longrightarrow \ln \frac{x}{x_0} = -kt$$

$$ln[A]_t = -kt + ln[A]_0$$


Equação da reta: y = m x + b


COMPORTAMENTOS CARACTERÍSTICOS DE UMA REAÇÃO DE PRIMEIRA ORDEM


Utilização da representação gráfica da relação linear de ln[A] em função do tempo para calcular a constante de velocidade.

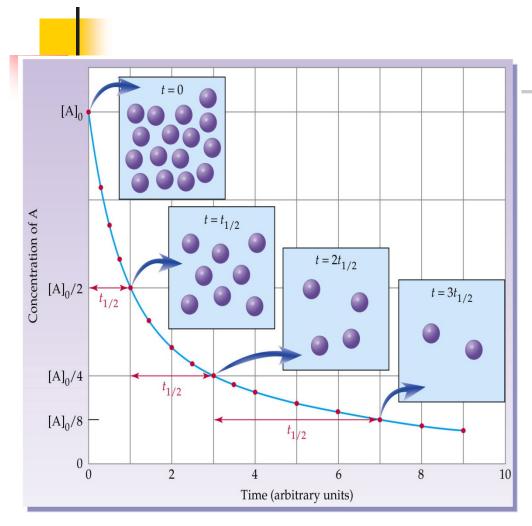
TEMPO DE MEIA-VIDA $(t_{1/2})$

reação de primeira ordem

Por definição t_{1/2}:

$$[A]_{t1/2} = [A]_0/2$$

$$ln[A]_t = -kt + ln[A]_0$$


$$t = \frac{1}{k} \ln \frac{[A]_0}{[A]}$$

$$t_{1/2} = \frac{1}{k} \ln \frac{[A]_0}{[A]_0 / 2}$$

$$t_{1/2} = \frac{1}{k} \ln 2$$

$$t_{1/2} = \frac{0,693}{k}$$

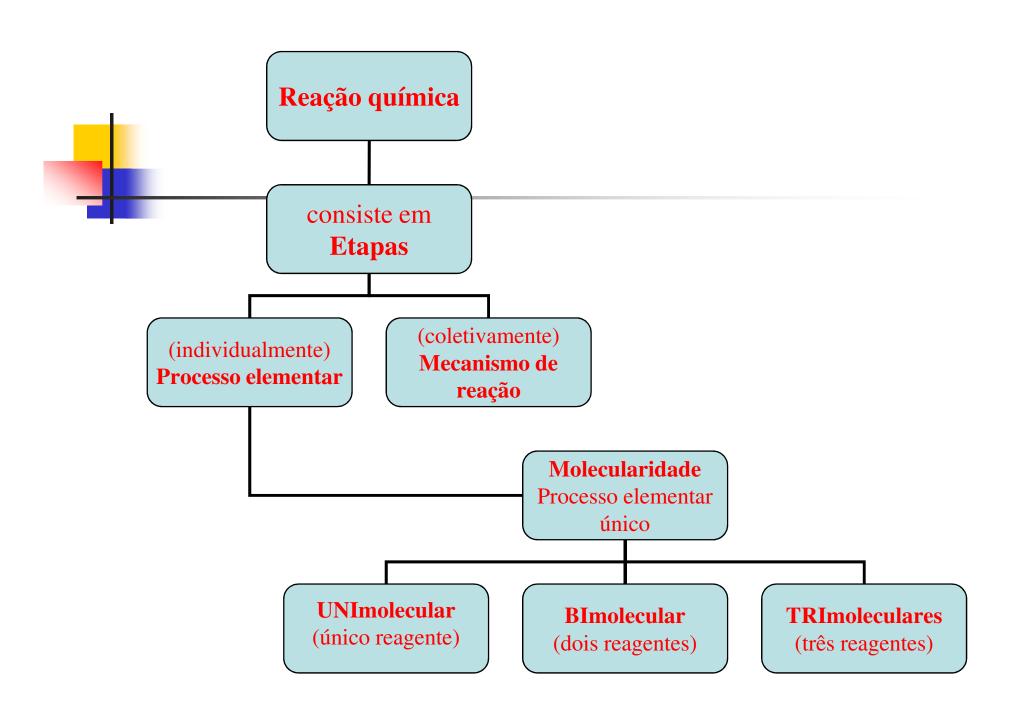
TEMPO DE MEIA-VIDA $(t_{1/2})$

reação de segunda ordem

Por definição t_{1/2}:

$$[A]_{t1/2} = [A]_0/2$$

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$$


Obtém-se

$$\frac{1}{[A]_0/2} = \frac{1}{[A]_0} + kt_{1/2}$$
$$t_{1/2} = \frac{1}{k[A]_0}$$

RESUMO DA CINÉTICA DE REAÇÕES DE ORDEM ZERO, 1º ORDEM E 2º ORDEM

Ordem	Equação cinética	Equação concentração-tempo	Tempo de meia-vida
0	Velocidade =k	$[A] = [A]_0 - kt$	$t_{1/2} = \frac{[A]_0}{2k}$
1	Velocidade = k[A]	$ln[A] = ln[A]_0 - kt$	$t_{1/2} = \frac{\ln 2}{k}$
2	$Velocidade = k[A]^2$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$	$t_{1/2} = \frac{1}{k[A]_0}$

Equação química:

$$2 \text{ NO} + 2 \text{ H}_2 \longrightarrow 2 \text{ H}_2 \text{O} + \text{N}_2$$

Mecanismo:

$$2 \text{ NO} \longrightarrow N_2O_2$$

$$v = k_a [NO]$$

$$N_2O_2 + H_2 \longrightarrow N_2O + H_2O \qquad v = k_a' [N_2O_2].[H_2]$$

$$v = k_a' [N_2O_2].[H_2]$$

$$N_2O + H_2 \longrightarrow N_2 + H_2O$$

$$v = k_b [N_2O].[H_2]$$

Intermediários na reação: N₂O e N₂O₂

4

Exercício proposto

As duas etapas elementares seguintes constituem mecanismo proposto para a reação de conversão do ozônio, O_3 , no O_2 :

$$O_3(g) \longrightarrow O_2(g) + O(g)$$

 $O_3(g) + O(g) \longrightarrow 2O_2(g)$

(a) Dê a molecularidade de cada etapa do mecanismo. (b) Escreva a equação da reação. (c) Identifique qualquer intermediário que houver.

RESOLUÇÃO (a) A primeira etapa elementar envolve um reagente apenas e por isso é unimolecular. A segunda etapa, que envolve duas moléculas de reagente, é bimolecular.

(b) A soma das duas etapas elementares dá

$$2O_3(g) + O(g) \longrightarrow 3O_2(g) + O(g)$$

Como o O(g) aparece em iguais quantidades em ambos os membros da equação, é possível eliminá-lo para se ter a equação química da reação:

$$2O_3(g) \longrightarrow 3O_2(g)$$

(c) O intermediário é o O(g). Não é reagente inicial nem produto final; forma-se na primeira etapa e é consumido na segunda.

Exercício Proposto

O mecanismo da reação

$$-Mo(CO)_6 + P(CH_3)_3 \longrightarrow Mo(CO)_5 P(CH_3)_3 + CO$$

é possivelmente o seguinte:

$$Mo(CO)_6 \longrightarrow Mo(CO)_5 + CO$$

 $Mo(CO)_5 + P(CH_2)_3 \longrightarrow Mo(CO)_5 P(CH_2)_3$

(a) O mecanismo é compatível com a equação da reação? (b) Identifique o intermediário ou os intermediários. *Resposta*: (a) Sim, a soma das duas equações leva à equação da reação; (b) Mo(CO)₅

Teoria das colisões

Para a ocorrência de uma reação química num processo bimolecular é necessário:

- Ocorra colisões entre os constituintes químicos dos reagentes.
- 2. Ocorra colisão com orientação favorável.
- Ocorra colisão com orientação favorável e com energia adequada.

1 .Ocorra colisões entre os constituintes químicos dos reagentes

3

Figura ilustrativa da aproximação(1,2), colisão (3) dos reagentes e a formação do produto(4).

Fatores que influenciam o no de colisões (Z)

Concentração dos reagentes

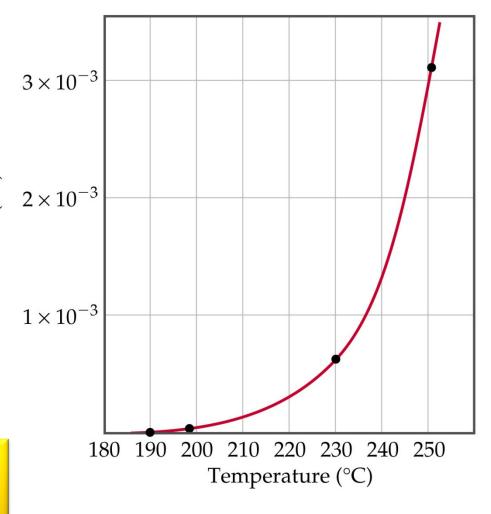
```
velocidade \alpha Z \alpha [A] [B]
Z = Z_0 [A]^x [B]^y \rightarrow \bullet \text{ Constante de proporcionalidade}
velocidade \quad \alpha \quad Z [A]^x [B]^y
```

Temperatura

 $velocidade \ lpha \ Z \ lpha \ E_{cinética}$

EFEITO DA TEMPERATURA NA VELOCIDADE

DE REAÇÃO



Higher temperature

Lower temperature

Efeito da temperatura sobre a velocidade Reação de quimiluminiscência do Cyalume.

Para a maioria das reações, a velocidade aumenta com um aumento da temperatura.

Variação da constante da velocidade da reação de isomerização da metil isonitrila em função da temperatura.

2. Ocorra colisão com orientação favorável.

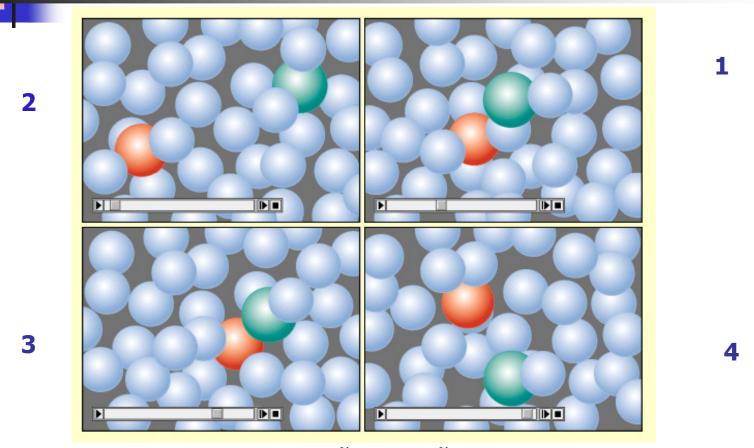
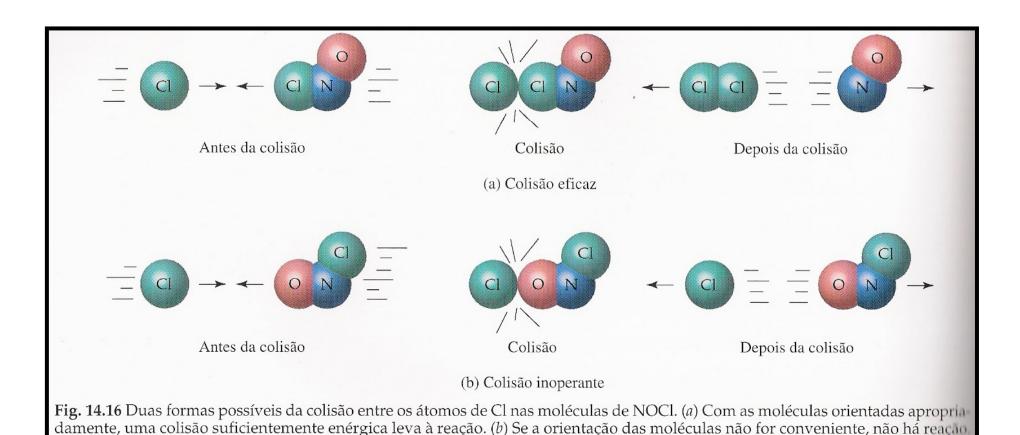
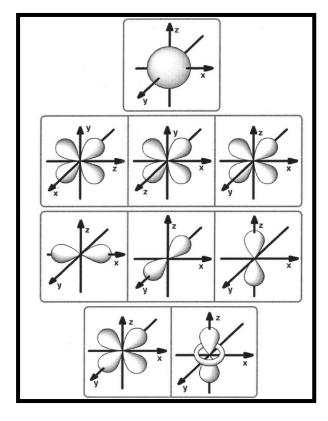
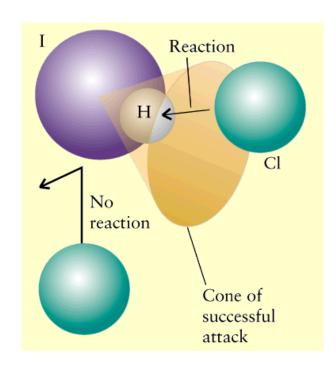
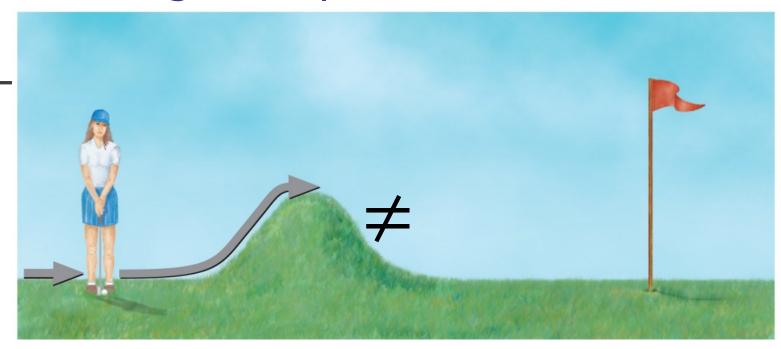



Figura ilustrativa da aproximação e colisão (1,2 e 3) dos constituintes químicos dos reagentes e o distanciamento (4)


Equação química: Cl + ClNO → NO + Cl₂

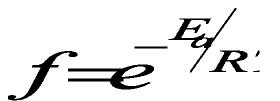


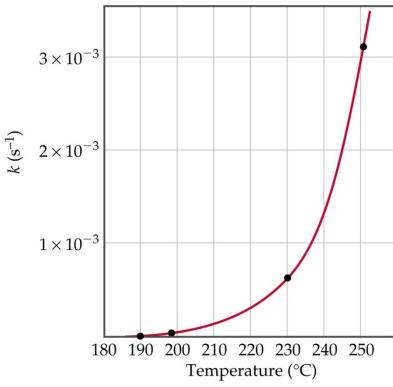

Efeito ESTÉRICO ou Fator Probabilidade (p)

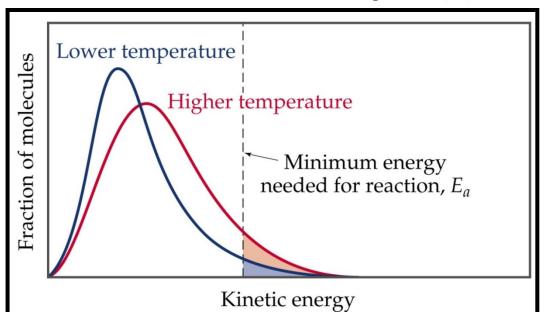
É a fração de colisões nas quais as moléculas estão orientadas à reação.

3. Colisão com orientação favorável e com energia adequada.

Assim como uma bola não consegue alcançar o topo do "morrinho" se não rolar com energia suficiente até o "morrinho; uma reação não ocorre se as moléculas, ao colidirem com orientação favorável, não possuírem energia suficiente para ultrapassar a barreira de energética.

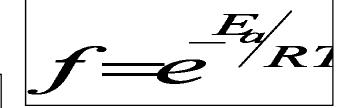

Colisão entre átomos


colisão entre bolas de bilhar



Equação de Arrenius

A fração de moléculas, f, com energia igual ou superior a E_a é:



Constante de velocidade: para um processo bimolecular

velocidade $\alpha \ Z \ \alpha \ [A] \ [B]$ $Z = Z_0 \ [A]^x [B]^y \rightarrow$ velocidade $\alpha \ Z \ [A]^x [B]^y$

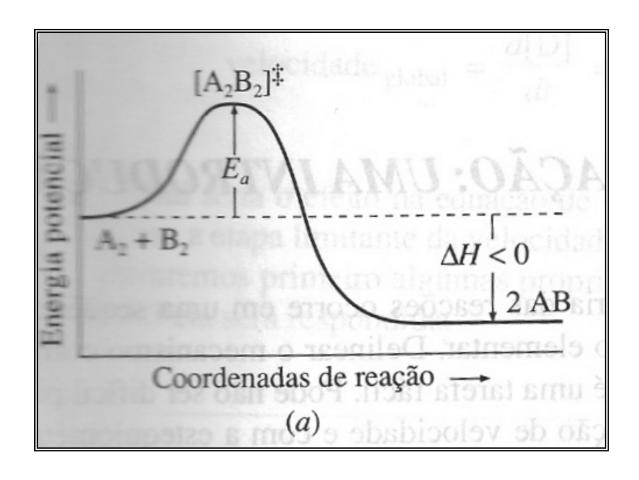
 $velocidade \alpha \ Z \ \alpha \ E_{cinética}$

Efeito ESTÉRICO ou Fator Probabilidade (p)

$$k = p \left(e^{-E_a/RT}\right) Z_0$$

$$velocidade = k[A_2]^x [B_2]^y$$

Na equação química:

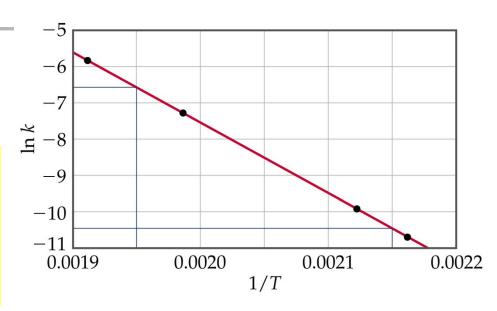

$$A_2 + B_2 \rightarrow 2 AB$$

Obs.: Para os <u>processo elementares</u> os expoentes das concentrações correspondem aos coeficientes da equação balanceada.

Teoria do Estado de Transição

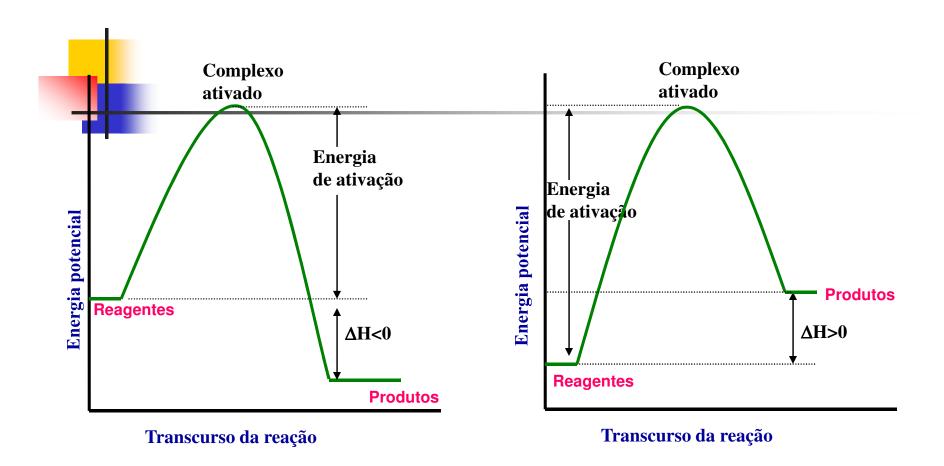
Na equação química:

$$A_2 + B_2 \stackrel{\leftarrow}{\rightarrow} [A_2 B_2]^{\S} \rightarrow 2 AB$$


DETERMINAÇÃO DA ENERGIA DE ATIVAÇÃO: E_a

Rearranjando a Equação de Arrhenius, obtém-se:

$$k = Ae^{-Ea/RT} \iff \ln k = \left(-\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + \ln A$$


$$E_a \text{ (kJ/mol)}$$

R = 8,314 J/K.mol

Para duas temperaturas, a relação entre as constantes de velocidade é:

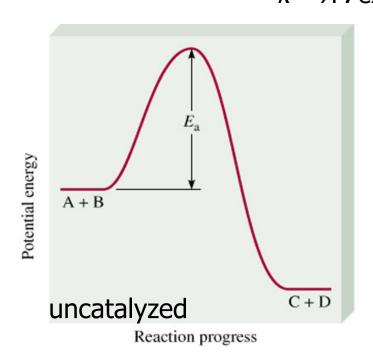
$$\ln k_1 - \ln k_2 = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

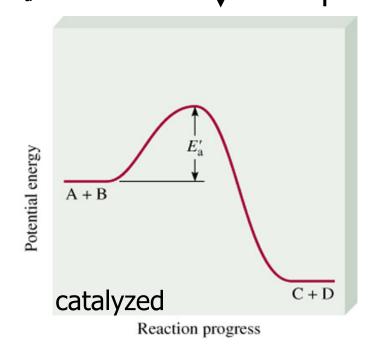
Reação exotérmica

Reação endotérmica

CATÁLISE

': É o fenômeno em que uma quantidade relativamente pequena de um material estranho à estequiometria – o catalisador – aumenta a velocidade de uma reação química sem ser consumido no processo (IUPAC, 1976)


A definição de catalisador está baseada na idéia de velocidade de reação → domínio da cinética química


CATÁLISE

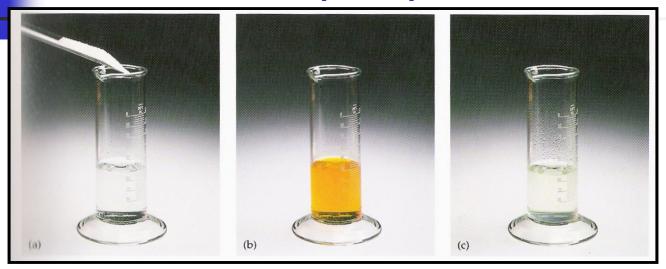
Um catalisador é uma substância que aumenta a velocidade de uma reação química, sem ser consumida durante essa reação.

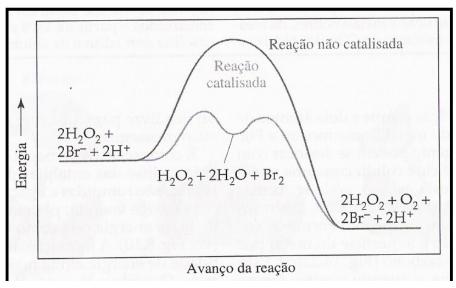
Um catalisador aumenta a velocidade de uma reação por diminuir a sua energia de ativação. $k = A \cdot \exp(-E_a/RT)$ $E_a \mid k \uparrow$

Velocidade_{reação catalisada} > Velocidade_{reação não catalisada}

CATÁLISE

Existem dois tipos de catalisadores:
 Homogêneos e heterogêneos.


Catálise homogênea: o catalisador encontra-se na mesma fase dos reagentes e produtos


Catálise heterogênea: o catalisador encontra-se numa fase diferente dos reagentes e produtos

Catálise Homogênea

Exemplo: decomposição da H₂O₂

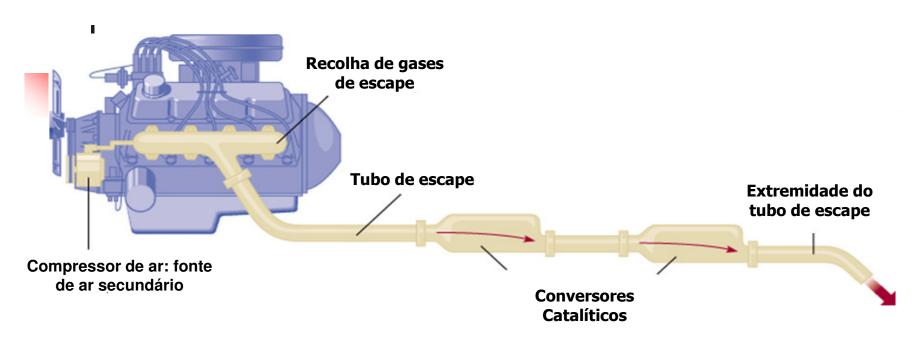
catalizador: Br - (NaBr)

CATÁLISE HETEROGÊNEA

Exemplo: Processo Haber (produz NH₃) (Haber recebeu o Prêmio Nobel em 1919).

Um dos mais importantes processos industriais → matéria-prima para indústria de fertilizantes (nitratos) → dezenas de milhões de toneladas são produzidas anualmente (alimentação e explosivos).

Haber: Nobel pela invenção do processo catalítico;


Bosch: Nobel pela tecnologia a altas pressões

A síntese de Haber da amônia

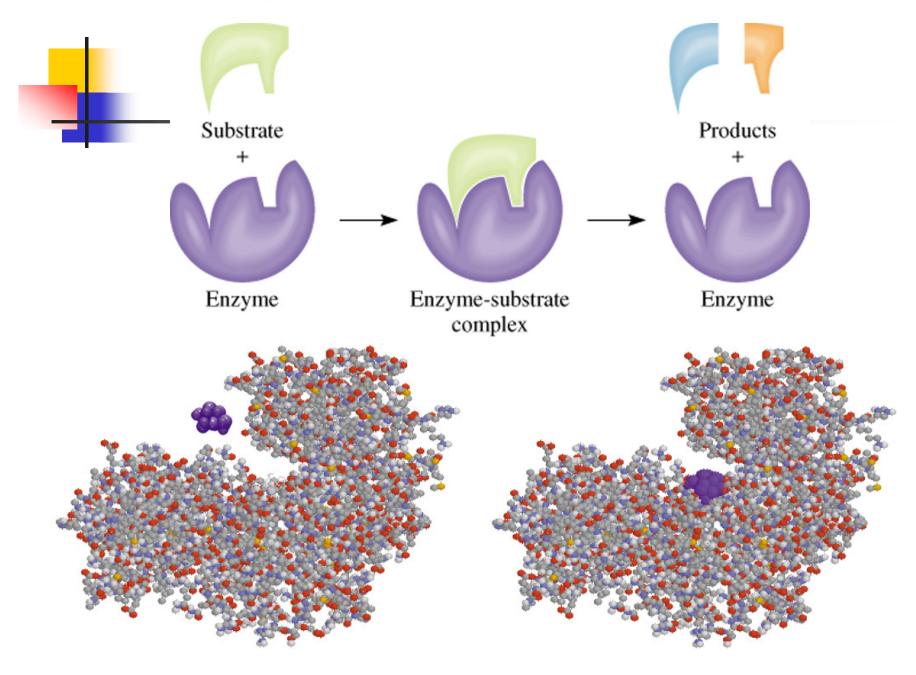
Fe/Al₂O₃/K₂O
$$N_2(g) + 3H_2(g) \xrightarrow{\text{catalisador}} 2NH_3(g)$$

$$Catalisador \xrightarrow{\text{catalisador}} Catalisador$$

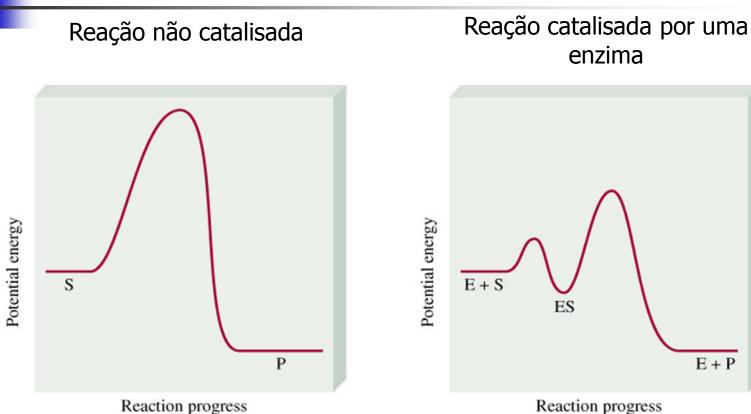
Conversores Catalíticos

CO + Hidrocarbonetos que não sofreram combustão +
$$O_2$$
 $\xrightarrow{\text{Conversor}}$ CO_2 + H_2O

$$2NO + 2NO_2$$
 Conversor $2N_2 + 3O_2$ catalítico


CATÁLISE ENZIMÁTICA

- As enzimas são catalisadores biológicos.
- As enzimas atuam apenas sobre moléculas especificas, chamadas substratos (ou seja, reagentes), deixando inalterado o resto do sistema.
- Uma enzima é tipicamente uma proteína de dimensões elevadas que contém um ou mais centros ativos. É nesses centros que ocorrem as interações com as moléculas de substrato. Estes centros ativos têm estruturas compatíveis apenas com certas moléculas com uma relação topológica semelhante à que existe entre uma chave e a respectiva fechadura.


$$E + S \Longrightarrow ES$$

$$ES \xrightarrow{k} P + E$$

CATÁLISE ENZIMÁTICA

EFEITO DE UM CATALISADOR ENZIMÁTICO NUMA REAÇÃO QUÍMICA

A reação catalisada ocorre num mecanismo em duas etapas. A segunda etapa (ES \rightarrow E + P) é a etapa que controla a velocidade da reação.