Vantagens e Limitações VSAT

Sem dúvida que poder transmitir informações para vários usuários separados a quilômetros de distância de

uma forma tão rápida é, e continuará sendo uma vantagem sobre qualquer outro meio de comunicação.

Aplicações militares para esta tecnologia não faltam, já que guerras sempre ocorreram e, pelos recentes fatos,

continuaram ocorrendo espalhadas por todo o globo. Porém o uso de ondas eletromagnéticas em uma

transmissão, ainda mais em uma transmissão envolvendo áreas enormes traz um ponto à discussão: a

segurança. Mesmo em sistemas que possuem os focos das antenas dos satélites pontuais, não raro são as

transmissões que usam da encriptação para garantir que somente pessoas autorizadas tenham acesso as

informações transmitidas.

Além do problema da chuva que afecta de forma diferente as diferentes bandas de transmissão, existe ainda o

problema pouco comentado de quando o satélite eclipsa o sol.

Este efeito interfere na comunicação

interrompendo (uma vez por ano no período por poucos minutos com previsão adiantada) por ser uma fonte

de ondas eletromagnética bastante poderosa. Assim, sistemas críticos que não podem ficar minutos sem

comunicação não devem usar VSAT.

Um fator que se deve ressaltar é que seu BER é variável, visto que as condições climáticas (chuvas)

interferem de forma direta, já que as ondas eletromagnéticas passam os primeiros quilômetros do seu

percurso na atmosfera.

Depois de todos os problemas apresentados, vejamos as vantagens. O próximo ponto a se levantar é a

rapidez. Relatos de instalações práticas mostram que redes VSAT podem ser implementadas e começar a

operar em poucos dias. Isto se deve a uma característica importante que os sistemas devem ter, o

amadurecimento e a não utilização de um meio físico fixo. Além de vários problemas já terem sido

detectados e solucionados, o amadurecimento de uma tecnologia traz a vantagem do custo menor. Como

custo, tempo e conhecimento dos problemas são fatores importantes em aplicações comerciais, uma

comparação, analisando estes tópicos, sempre deve ser feita entre tecnologias.

Levando-se em consideração que localidades mais distantes são sempre deixadas para segundo plano no que

diz respeito a comunicações, unidades fabris e pequenos aglomerados rurais sempre podem contar com este

meio de transmissão. Localidades insulares, de pouca infraestrutura e veículos de mobilidade intercontinental

(aviões e navios) são possíveis candidatos a possuírem VSAT.

Curso VSAT – Página

10 de

19

Exemplos de Aplicações VSAT

Um fabricante de hardwares para VSAT, cita como um dos seus melhores exemplos de implementação, o

caso de um conjunto financeiro na costa leste da África. As requisições para a implementação eram que a

rede pudesse suportar grandes transferências de arquivo (10Mb) sobre informações financeiras, pudesse

transmitir voz sobre IP, provesse acesso à internet e e-mail. Assim, após o planejamento do tráfego

(obviamente não informado) foi instalada a rede VSAT para 200 terminais, onde se integrou uma rede

híbrida estrela/

mesh

operando na banda C. A escolha da banda utilizada foi motivada pelo custo, já que não

existia links de ondas eletromagnéticos terrestres que pudesse atrapalhar as comunicações. A utilização desta

tecnologia ocorreu devido à ineficiência da rede de telefonia local e transmissões de dados praticamente não existentes.

Se você neste momento está pensando que isto só ocorreu porque foi na África, saiba que a Reuters

implementou um sistema financeiro semelhante disponível da América do Norte a América do Sul. Este caso,

em especial, usou a vantagem da grande abrangência que a rede VSAT pode conter. Este caso pode ser

encontrado no site da Intelsat.

Finalizando os exemplos, também fornecido pela Intelsat, temos o caso de vários locais de extração de

petróleo e gás natural, além das bases espalhadas em terra que necessitavam de uma mais eficiente

comunicação. Requerendo a união de suas redes LAN, introdução de internet, intranet, voz e

aperfeiçoamento à distância, a rede foi estabelecida utilizando DVB IP ligando dez localidades com uma

expansão previsível, segundo a Intelsat, a cem localidades.

Curso VSAT – Página

11

de

19

7. Conclusão

Certamente as comunicações por satélite não devem ser um mercado próspero nas grandes populações,

devido às restrições já analisadas anteriormente. A fibra óptica, já é parte integrante dos grandes centros

urbanos e seu potencial de escalabilidade é incrível. Estima-se que apenas uma fibra, especialmente com os

recursos do WDMA, tem maior largura de banda que todos os satélites lançados se caracterizando como o

melhor meio de comunicação para tráfegos pesados.

Nas áreas isoladas e em alguns segmentos onde mobilidade, rapidez de implementação e comunicação em

massa são necessários, o VSAT continua sendo usado. Destaca-se que o alcance a grandes distâncias, mesmo

que em terrenos adversos, ainda é o grande trunfo que as comunicações por satélite possuem. Terminais que

apenas recebem informações, como os empregados frequentemente no ramo financeiro, são utilizadores desta

forma de comunicação.

A associação de links VSAT a redes já existente é, claramente, a forma mais comum de se ver tais

equipamentos. A espera por fibra óptica, mesmo em regiões próximas aos grandes centros urbanos, pode ser

longa demais, principalmente em países subdesenvolvidos.

O que deveria ter sido mais bem explorado, e que talvez em um futuro próximo o seja, são os satélites de

baixa órbita que possuem atrasos menores (da ordem de 10 ms) o que poderia ampliar o uso das

comunicações por este meio. Serviços de internet oferecidos através deste tipo de satélite, a exemplo do

projeto Teledesc, talvez possam revolucionar o mundo das comunicações.

Atualmente já se começa falar em USAT (

Ultra Small Aperture Terminal

) que utilizam as mesmas técnicas

aqui comentadas, porém com antenas menores ainda, ou seja, da ordem de um metro de diâmetro.

Atualmente a menor antena comercial existente é de apenas 55 cm.

Curso VSAT – Página

12

de

19

8. Guia Instalação com modem iDirect

Antes da instalação

Ferramentas para o levantamento:

_

Bússola

_

Inclinômetro

_

Câmera digital

-

Fita métrica

Pontos a ter em conta no levantamento:

```
Linha de visão
Tipo de mastro a usar (chão, parede, etc)
Acesso ao telhado/recinto
Rota e comprimento do cabo (IFL)
Ponto de entrada do cabo (nunca pelo telhado, furar sempre em horizontal)
Licença do dono
Horas de aceso
Condições de energia
Licença de operação do organismo regulador
Locação do modem
Obras de empreitaria
Interferências terrestres na mesma banda de trabalho.
Inventário de materiais precisos para a instalação:
Antena
Mastro
Feed Horn
(trombeta)
BUC (
Block Up Converter
Fecho do BUC (parte metálica que parafusa-se acima para lhe assegurar)
LNB (
Low Noise Block
Cabo TX e RX (RG6 - 30m. / RG11- 100m. /RG213 - 100m.)
Conectores tipo F ou N (dependendo do equipamento)
Modem com alimentador e cabo de rede
Antes de começar precisam-se os seguintes elementos:
```

```
Arquivo de definições (
Options File
) e aplicativo iSite
Dados de elevação, azimute e polarização
Inclinômetro, bússola, multímetro
Computador portátil
Analisador de espectro
Mala de ferramentas com chaves de fenda, estrela, allen, fixas, francesa,
alicates, etc
Crimpadora de cabos coaxiais com conectores extra
Ferramenta pela-cabos.
Cabos extra, RG6, RG11, ethernet cruzado e direito, série RS-232 e
convertedor série USB
Bridas de diversos comprimentos
Fita cola a prova de água (Scotch)
Lanterna com baterias sobressalientes
BUC, LNB, Modem e alimentador sobressalientes (Opção)
Curso VSAT - Página
13
de
19
Durante a instalação
A montagem estândar resume-se nos seguintes passos:
Montagem do mastro
Provisão de lastro ou betão
Montagem do prato
Montagem e instalação da trombeta (com LNB e BUC)
Instalação e terminação dos cabos e conectores
Apontamento (pointing) e comprovação (peaking)
Ativação com o NOC do fornecedor
```

Provas da ligação com os aplicativos que peça o cliente

_

Limpar e arrumar o local

_

Preencher a folha de instalação

Guia para o apontamento em 10 passos:

Para um bom apontamento da VSAT, existem apenas alguns passos críticos.

Entendê-los reduzirá o tempo

necessário para encontrar e ajustar a antena.

1)

Conheça as definições de azimute, elevação e polarização. Você deve tê-las antes da visita à

instalação (site survey). Utilizar a calculadora Look Angle como a de www.satsig.net/ssazelm.htm

2)

Conheça o OFFSET look angle da antena específica que você está instalando. Um guia rápido para

algumas antenas comuns:

Patriot 1.2m: 22 graus Prodelin 1.8m: 22.3 graus Patriot 1.8m: 22.3 graus Andrew 1.2m: 23 graus Prodelin 1.2m: 17,3 graus Andrew 1.8m: 22.6 graus

3)

Aperte bem toda a antena. As porcas de Azimute e Elevação devem estar soltas o suficiente para

explorar o céu sem problemas, mas não tão solta quanto a permitir que a antena abane.

4)

Defini a Polaridade correcta. Para

downlink

Horizontal, zero graus será definido quando o LNB está

na posição 12:00 ou 6:00 horas. Para

downlink

Vertical, zero graus será definido quando o LNB está na

posição 3:00 ou 9:00 horas. Em seguida, gire a trompeta e monte pela configuração de polaridade para o seu

site. Se a configuração de polaridade for positiva, a montagem deve rodar no sentido anti-horário. Se a

definição da polaridade for negativa, a montagem deve rodar no sentido horário. A rotação é feita segurando

a trompeta montada nas suas mãos, enquanto virada para a frente da antena. 5)

Definir a elevação mais 3 graus. Subtrair o offset da antena para verdadeira elevação do satélite, esta

será a elevação real definida para sua antena. Usando um inclinômetro, definir a elevação da antena três

graus acima da elevação real. Zero graus é quando a antena está de pé para cima olhando para o horizonte.

6)

Exploração do satélite. Ligue o analisador de espectro ou o modem ao LNB. Lentamente, mover a

antena lado a lado. Movimente circularmente 45 graus em cada lado da sua bússola posição (azimute). Se não

for encontrado o satélite, baixe a elevação da antena por uma volta da porca de ajuste da elevação e explore

novamente. Continuar explorando horizontalmente diminuindo a elevação até o satélite ser encontrado.

7)

Uma vez encontrado, centralize o azimute da melhor forma possível. Apertar os parafusos de

Azimute e Elevação de montagem no mastro. Com as porcas apertadas, o apontamento vai mudar um pouco,

e o nível de potência irá cair. Ajuste enquanto esteja a apertar para compensar isso.

8)

Afinar a antena com o as porcas de aperfeiçoamento. Afinar o Azimute primeiro e, então, a elevação,

o Azimute novamente. Apertar o conjunto ao mesmo tempo que vê o sinal nível de potência. Se o nível de

potência cai, reajustar o azimute e elevação. Os níveis de potência devem estar no nível mais elevado

possível uma vez que a antena esteja completamente apertada.

Curso VSAT – Página

14

de

19

9)

Confirmar que estamos no ponto mais alto empurrando ou esticando a antena suavemente sobre a as

partes direita, esquerda, superior e inferior do prato. Em cada caso, o nível de potência deverá diminuir. Se

empurrar a antena em qualquer direção aumenta o nível de sinal, é preciso fazer outro ajuste fino nesse sentido.

10) Girar a trombeta à direita e esquerda suavemente para obter o máximo nível possível.

Configuração do Modem:

O primeiro que tem de fazer é mudar o endereço IP do computador para um mais do que modem. Para achar

o IP do modem, podemos usar o iSite (aparece só ligar o cabo do PC para o Router) ou bem estabelecer uma

ligação série, usando cabo Cisco. Como aplicativo pode usar Hyper Terminal ou Putty, com os dados

seguintes:

Baud Rate: 9600

Bits de D

ados: 8

Bits de Parada: 1 Bits de Paridade:

Ν

```
enhum
Controlo de Fluxo: Nenhum
O nome de utilizador é root (admin para iSite e telnet) com a senha iDirect ou
P@55w0rd!
O comando ifconfig já consegue a informação com formato UNIX, fica mais
clara com os comandos "telnet
0" e "laninfo" de seguido.
Com o IP, já podemos fazer login com o aplicativo iSite:
E carregar o arquivo de definições, do menu
options file > Download from Disk
Também pode se acessar direitamente desde o botão que têm no iSite:
Curso VSAT – Página
15
de
19
Para fazer efetiva a carga do arquivo, um reinicio é pedido pelo iSite. Após do
reinicio, o modem já tem
todos os parâmetros do fornecedor, incluídas novas senhas para os
utilizadores admin e user, pedir ao
fornecedor.
Curso VSAT - Página
16
de
19
Quando conectar o modem a uma antena bem apontada, a luz RX deve virar
verde. Nesse momento temos de
comprovar o nível de sinal de recepção (rx snr) usando o iSite ou bem uma
sessão telnet:
Com iSite vamos no menú
Configure
Align Antenna
Antenna Pointing:
O nível que procuramos é a força do sinal, indicado em verde,
Current Signal Strength
Ativação do Modem:
Para ativar a ligação, o fornecedor pode pedir fazer alguns testes, como o
cross-pol test
 ou o
1 dB
compression test
, para o que precisamos ativar o modo CW (
Carrier Waveform
 ou
Clean Waveform
modem. É recomendado desligar o cabo TX quando usarmos o
```

Antenna Pointing , por favor conferir sempre com fornecedor: Curso VSAT – Página 17 de 19 Para o cros-pol test nos darão uma frequência de Uplink e nos indicarão como movimentar a trompeta para maximizar o sinal. Para o 1 dB compression test , nos farão mudar a potência de transmissão (Transmit Power) para acima e para abaixo até chegar ao número óptimo. Havendo finalizado os testes da ativação, ligaremos o cabo TX novamente, reiniciaremos o modem e comprovaremos que a luz RX vira verde, depois a luz TX e finalmente a NET. Com NET verde, a ligação fica estabelecida. 9. Correção de erros Tradução da Guia de iDirect. 10. Parte practica: Dia 1 Montagem completa dum sistema KU Dia 2 Montagem completa dum sistema Banda C Curso VSAT – Página 18 de 19