O que é colorimetria?

A colorimetria é a ciência do estudo da cor de acordo com a percepção humana padrão. Ela nos ajuda a estudar o fenômeno das cores que percebemos através do globo ocular, do ponto de vista físico e psicológico, e suas composições. Ela não tem só aplicação na estética, mas também na fotografia, artes digitais e artes gráficas. O objetivo deste curso é ensinar a colorimetria capilar e suas aplicações estéticas, ajudando a prever resultados, corrigir erros e obter uma finalização adequada para o cliente.

Como enxergamos a cor?

O olho humano é um mecanismo complexo, desenvolvido para a percepção de luze cor e possui dois tipos de células responsáveis por nos fazerem enxergar: cones e bastonetes.

O que é Bastonetes?

Os bastonetes são as células responsáveis pela visão noturna. Necessitam de pouca luz, porém, não conseguem formar imagens com cor ou nitidez. É por isso que à noite ou em locais escuros, é muito difícil se distinguir cor.

O que é Cones?

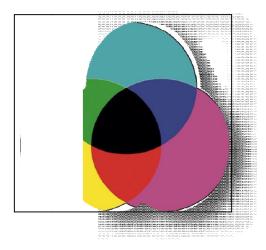
Já os cones, diferente dos bastonetes, são sensibilizados com uma quantidade grande de luz e geram imagens nítidas e coloridas. Existem 3 tipos de cone: os azuis, os vermelhos e os verdes. Eles são chamados assim, pois cada cone mencionado é representado por sua cor correspondente e também é ativado por um determinado comprimento de onda. O olho humano detecta somente estas cores (apesar de detectarmos cerca de 100 níveis de intensidades de cor) e todas as possíveis combinações, ou seja, tudo o que vemos e percebemos, resulta de uma combinação e variações de tons entre elas.

Sistemas de cor RGB e CMYK

Existem sistemas de cores que são, na verdade, tentativas de organizar informações sobre a percepção cromática humana. Podemos tipificá-los em dois: 1) Síntese Aditiva (RGB), na qual a cor é percebida a partir da fonte de luz, e 2) Síntese Subtrativa (CMYK), na qual a cor é percebida a partir do reflexo da luz sobre uma superfície.

RGB

O sistema RGB é determinado pela propriedade fundamental da cor (vermelho, verde e azul), em que encontramos o branco em um ponto focal, ou seja: a partir de sua mistura. O RGB é utilizado para a reprodução principalmente em monitores, TVs e computadores


(internet). Ele é aditivo, ou seja, é percebido na refração da luz.

CMYK

Já o sistema CMYK é determinado pela absorção da luz. Diferente do RGB, ele é um sistema subtrativo de cores, utilizado principalmente na indústria gráfica em geral.

O CMYK é o oposto do RGB: cada uma de suas cores (ciano, magenta e yellow = amarelo) representa o espectro oposto das cores RGB, e, como complemento, temos o K (de BLACK ou "Key"= cor-chave) ou preto absoluto, essencial graficamente para a reprodução de detalhes.

Qual sistema de cor usamos?

O profissional cabeleireiro colorista e todos os demais profissionais que trabalham com cores usam o sistema CMYK. Os cabeleireiros e os visagistas se orientam por este sistema para definir a mudança de cor do cabelo de suas clientes.

Luz

O que é luz?

Apesar de a vermos, ela não ocupa espaço e nem possui massa.

A luz visível e o que vemos é uma forma de onda de radiação eletromagnética, também chamada de energia radiante, como as ondas de rádio, micro-ondas, infravermelho e raios-X. As diferentes ondas se caracterizam pelo seu comprimento.

Luz e cor I

Os comprimentos de ondas visíveis se encontram aproximadamente entre os 380 e 750 nanômetros. Ondas mais curtas (ou com maiores frequências) abrigam o ultravioleta, os raios-X e os raios gama. Ondas mais longas (com menores frequências) contêm o infravermelho, o calor, as micro-ondas e as ondas de rádio e televisão.

Cor	Frequência	Comprin	iento de onda Violeta
668-789	THz 38	30-450 nm	
Azul	631-668	THz	450-475 nm
Ciano	606-630	THz	476-495 nm
Verde	526-606	THz	495-570 nm
Amarelo	508-526	THz	570-590 nm
Laranja	484-508	THz	590-620 nm
Vermelho	400-484	THz	620-750 nm

Qualquer objeto colorido pode ser analisado de acordo com as cores primárias, ou seja, pelo comprimento que é percebido de sua onda. Em um um colorímetro, por exemplo, são utilizadas as três cores primárias: vermelho, verde e azul. Os espectrofotômetros fornecem uma análise mais detalhada da intensidade da luz em diversos comprimentos de onda da cor, em termos de reflexão ou transmissão espectral.

Luz e cor II – Exemplos

A luz violeta, por exemplo, tem o comprimento de onda mais curto e a frequência de onda mais alta. A infravermelha tem comprimento mais longo e frequência mais baixa.

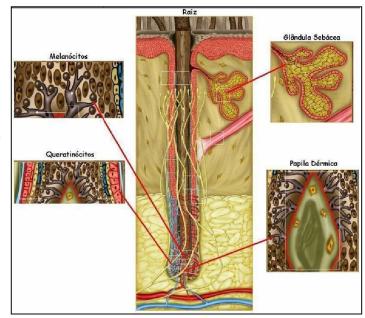
Uma maçã nos parece vermelha porque todas as outras ondas são absorvidas pelo objeto e só refletem as ondas vermelhas. Igualmente, os serviços de coloração química alteram a estrutura dos cabelos para que absorvam algumas ondas e reflitam outras. Qualquer mudança na luz disponível resultará em mudança na cor que vemos. A luz do sol o revelará mais quente, enquanto uma luz fluorescente o revelará mais frio.

O nível de saturação (também conhecido como altura de tom)

O nível de saturação da cor (altura do tom) indica o quanto uma cor é clara ou escura. Os números de 1 a 10 são normalmente usados pra expressar a saturação Obs: Na coloração por oxidação, durante o processo de reação química, revela-se a cor não apenas por mistura de pigmentos puros, mas também pela oxidação.

A tonalidade ou a nuance (também conhecida como reflexo da cor) pode ser primária, secundária e terciária, como é o caso da colorimetria usada em salões.

Tonalidade ou nuance (reflexo da cor)


A tonalidade é determinada por um pequeno desequilíbrio das cores, tendo os reflexos de cores primárias, secundárias e terciárias. Ela nos informa a quantidade de cores ou quais cores estão sendo empregadas para revelar os reflexos.

Três fatores determinam as cores ou clareamentos dos cabelos:

- A <u>espessura</u> do cabelo, que pode ser fino, médio ou grosso;
- A <u>quantidade</u> e o tamanho dos grânulos de melanina, como densidade e pigmentação;
- A <u>razão</u> entre eumelanina e feomelanina (melaninas do fio) interpretada como **altura de tom.**

Clareamento e descoloração

A cor natural do cabelo pode ser clareada pela superoxidação da coloração com "superaclarantes" (por exemplo, claros e loiros claríssimos) ou descoloração

melanina com misturas de pó e cremes descolorantes, ou ainda oxidantes de alta volumagem. Esta descoloração degrada não só a melanina, mas também parte da estrutura do fio de modo que ele não absorve a mais luz, somente a reflete.

O clareamento ou a descoloração deve limpar os tons que temos como primários: vermelho, amarelo e azul. Isso deveria acontecer em proporção igual, mas não é sempre assim que acontece nos salões.

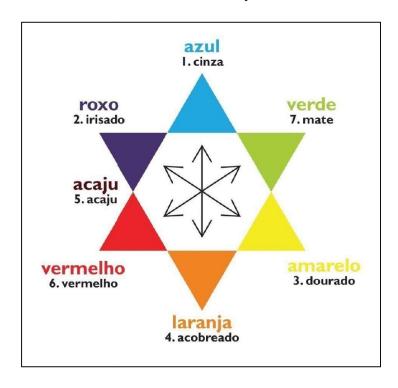
No fundo de clareamento, a revelação da cor acaba sempre se dando em cores quentes. Perceba que isso acontece de acordo com a estrutura do cabelo.

A previsão do fundo de clareamento deve ser o mais importante tema de simulação, para a decisão correta da técnica que será utilizada e a cor resultante. Porém, os resultados da descoloração sempre dependerão da cor original do fio.

Tabela de fundo de clareamento

	Fundo de Clarear	
4- Castanho	Vermelho Escui	
5- Castanho	Vermelho	
6- Louro E:	Vermelho- Larar	
<mark>7- Louro M</mark>	Laranja	
8- Louro C	Laranja Claro	
9- Louro M	Laranja-Amarel	
10- Louro	Amarelo	

Os cabelos mais claros abrem as escamas com mais facilidade, revelando assim mais facilmente a descoloração. Já os mais escuros têm mais dificuldade para abertura e revelação, por conterem maior número de melaninas. Temos 10 níveis de descoloração e somente o fio totalmente preto passaria por estes dez níveis.


Os clareamentos podem ser usados para dois fins: clareamento total (ou até o nível final) ou apenas preparar o cabelo pra receber outra cor:

Nível 10 amarelo- pálido Nível 9 amarelo- claro Nível 8 amarelo- dourado Nível 7 amarelo- laranja Nível 6 laranja- amarelado Nível 5 vermelho- alaranjado Nível 4 vermelho- escuro

Nível 3 vermelho- profundo Nível 2 castanho- avermelhado Nível 1 castanho escuro avermelhado

Cores Primárias e secundárias e neutralizações entre si

REFLEXOS (convencionados pelo mercado)

- 0 Natural (base fundamental)
- 1 Cinza ou azul
- 2 Roxo ou irizado
- 3 Amarelo ou dourado
- 4 Cobre ou laranja
- 5 Acaju
- 6- Vermelho
- 7 Verde ou mate
- 8- Mel ou 9 perola
- 10- Marrom

Colorações: divisão

Podemos dividir as colorações em 4 tipos:

- 1) Vegetais
- 2) Metálicas
- 3) Compostas
- 4) Sintéticas

Coloração vegetal

São as colorações com base vegetal, sem aditivos químicos. Costumam oferecer uma cobertura mais suave que não agride o fio, porém desbotam com facilidade. Elas são conseguidas principalmente através da henna, mas também temos o índigo, a malva e a camomila.

Elas revelam as seguintes cores: henna (revela somente laranja avermelhado (com a planta madura e com suas folhas verdes obtém-se uma henna sem cor, só para brilho); camomila – azuleno (calmante e descongestionante, mas não clareia, ajuda a manter os reflexos dourados já existentes no fio) e indigo - (flor que dá a cor ao tecido jeans) atua na tonalização azulada dos fios.

Existem no mercado também outros extratos, como o açafrão, rúbia e a malva.

Exemplos de formulação vegetal para colorações:

Pó de henna20,0 g Pó de indigo......80,0 g

Utilizamos esta mistura para obter um castanho.

Coloração Metálica

As colorações metálicas são denominadas como graduais ou progressivas, pois sua aplicação diária permite desenvolver nos cabelos diferentes graus de coloração. Nós as encontramos sob a forma de loção, cremes, e pomadas. Na sua composição, são utilizados sais de prata, cobre, níquel e bismuto. Neste tipo encontramos, por exemplo, o Grecim 2000 e alguns tipos de Hennêh (alisante que colore).

Coloração Composta

Revela a cor por deposição dos metais, que, por sua vez, entram em oxidação revelando a cor, que passa pelo amarelo, laranja, verde e escurecimento para revelar o cinza.

*Antigamente incluía-se o chumbo, mas ele foi proibido no Brasil.

Neste tipo temos como exemplo a henna (vegetal) que recebe um aditivo químico (geralmente sais metálicos) para escurecer seu corante.

Coloração sintética

Classificamos a coloração sintética em três categorias, conforme a duração da cor (depois de aplicadas): coloração temporária, coloração semipermanente e coloração permanente.

Coloração temporária

As colorações temporárias são eliminadas com shampoo e utiliza-se um corante com elevado peso molecular. São depositadas na superfície da fibra.

Os pigmentos podem ser constituídos de nitroanilinas e as moléculas são catiônicas.

Coloração semipermanentes

Os corantes das semipermanentes não permanecem dentro da fibra capilar, mas possuem afinidades com a queratina do cabelo, que não é eliminada facilmente.

Coloração permanente

As tinturas permanentes são classificadas em **oxidativas** e **progressivas**.

As oxidativas consistem em componentes que são misturados, antes do uso, e que geram a tintura por reações químicas sobre e dentro da fibra capilar. Os três maiores componentes das tinturas permanentes são os intermediários primários, (geralmente pdiaminas ou p-amino fenóis), os acopladores, que podem ser m-diaminas ou m-amino fenóis, e os oxidantes, usualmente o peróxido de hidrogênio.

Já as progressivas necessitam da adição de uma solução alcalina para abrir as escamas da cutícula e permitir que a tintura atinja o córtex. Elas utilizam tinturas metálicas com sais de chumbo (atualmente proibido no Brasil), bismuto ou prata. As partículas metálicas interagem com os resíduos de cisteína presentes na queratina e acumulam-se nos fios de cabelo, mudando gradualmente a cor.

Tanto as colorações permanentes quanto as semipermanentes necessitam de água oxigenada para agir, pois as reações químicas para a revelação de cor necessitam de um pH alcalino, dado pelo hidróxido de amônio. O peróxido age provocando a oxidação dos corantes e uma parte age sobre os pigmentos da melanina do cabelo, revelando a cor. Para falarmos então de coloração sintética, temos que mencionar dois importantes fatores que fazem a diferença nos processos de coloração e na divisão da categoria: **agentes oxidantes e alcalinizantes.**

Agentes oxidantes: Agem com base na reação de oxidação promovida pelo peróxido de hidrogênio H2O2 (água com um átomo a mais de oxigênio), muito reativo, que é responsável pela oxidação da melanina. Temos abaixo a tabela com o exemplo da volumagem conseguida através da poncentagem ou concentração de hidrogênio. *O Peróxido de hidrogênio foi inventado por um químico e um cabeleireiro por volta de

1867 em Paris. Possui denominação H2O2 – Peróxido de hidrogênio. A força de sua ação é medida pelas porcentagens.

Peróxido de hidrogênio:	Volume hidrogênio:
3 %	10 vol.
6 %	20 vol.
9 %	30 vol.
12 %	40 vol.
30 %	100 vol.
35 %	130 vol.

Reação do peróxido de hidrogênio

O uso do peróxido de hidrogênio concentrado em salões não é permitido por lei. O termo "volume" indica a porcentagem de peróxido de hidrogênio em solução aquosa. Ex.: 3 % de peróxido de hidrogênio diluído em 97% de água.

Embora o oxigênio seja um gás, no peróxido de hidrogênio ele é mantido como um líquido. Este composto, quando em decomposição, libera o gás de oxigênio e água. *Na decomposição de 1oz de peróxido de hidrogênio vol. 20, são liberadas 20 oz de gás e 1 oz de água. (oz é uma unidade de medida que vale: 28,35 g).

Tabela de Clareamento

3 % tom sob tom 6 % 1 a 2 tons 9 % 2 a 3 tons 12 % 3 a 4 tons

Tempo de oxidação De 25 a 55 minutos.

Reações de oxidação

Os oxidantes que possuem pH muito baixo não têm o poder de dilatação das camadas de cutículas. As soluções de peróxidos são estabilizadas por acidificantes, pois são

bastante instáveis e de rápida decomposição. Por isso, os oxidantes devem ser embalados e acondicionados de acordo com a orientação do fabricante, pois, em más condições, podem formar pressão e explodir.

Corantes

Disponibilização da amina para reação de diazotização. Para completar a síntese do alaranjado de metila, realiza-se, então, a reação de acoplamento.

Ação da coloração por oxidação

Unidos à base da tintura (moléculas de pigmento dos colorantes), aos fenóis (reflexos), ao oxidante com a amônia, ao agente alcalino e aos produtos de ação cosmética, formam-se os elementos ativos numa massa ou coloração propriamente dita. Ao aplicarmos esta massa nos fios, damos início à reação química da coloração no interior do cabelo.

Ação da coloração por oxidação

Ao liberar as moléculas de oxigênio, o oxidante clareia os pigmentos naturais enquanto a amônia interage com sua ação dilatante, abrindo a cutícula do cabelo, acelerando a liberação de oxigênio e facilitando a penetração do colorante, além de regular o pH do produto. Todo o processo ocorre simultaneamente, do clareamento dos pigmentos naturais à fixação da nova cor no córtex.

Tinturas por oxidação

As tinturas por oxidação resultam de reações químicas entre pequenas moléculas primárias de acopladores. Exemplos:

Parafenilenadiamina (PPD), o paraminofenol (PAP), o ortoaminofenol (OAP) e o parafenilenodiamina sulfatado (PPDS).

Os modificadores metaaminofenol (MAP), resorcinol (RCN), naftol (NA), 4clororesorcinol (4CLR) e tantas outras moléculas como essas.

Temos a formulação da cor através de seus intermediários primários e secundários com diversos pesos moleculares:

PPD +MAP= PINK PPD + MPD= AZUL PPD+RCN= VERDE PAP+MPD= VERMELHO

Ação da coloração por oxidação

Os produtos de ação cosmética atuam como agentes "sobre-engordurantes", para repor a oleosidade com polímeros, diminuindo, assim, a sensibilização capilar. (Obs: Tintura não clareia tintura. Os oxidantes, ao liberarem oxigênio, só clareiam pigmentos naturais.)

Agentes Alcalinizantes

Um pH adequado é muito importante para uma perfeita intensidade da cor, em curto espaço de tempo. Ele deve variar de 9,0 a 10,5, permitindo um processo oxidativo e de alcalinidade suficiente para abrir a cutícula e admitir a entrada do corante. Os

clareadores, por exemplo, possuem pH de 9,5 a 11 por dois motivos: O primeiro é que o pH alcalino expande e dilata a queratina e abre a cutícula, promovendo maior penetração dos pigmentos, assim se dá uma melhor degradação da melanina, e, segundo, o pH alcalino desencadeia a decomposição rápida do peróxido de hidrogênio acelerando a oxidação.

Utiliza-se, na grande maioria das colorações, o hidróxido de amônio. Seu substituto

pode ser também a mono etanolamina (também chamada 2-aminoetanol ou monoetanolamina, abreviado como ETA ou MEA, é um composto orgânico de fórmula CH2CH2OH.) Notamos diferenças significativas nas colorações, quando comparadas em uma tintura com amônio e outra sem amônio. Porém, precisamos sempre da alcalinidade, pois a reação química para a fixação da cor requer um meio alcalino para processar.

Nas colorações nas quais o agente alcalino é a amônia, temos mais força para o rebaixamento do tom e, portanto, maior facilidade para a obtenção de cores claras. Já em um meio onde o agente for monoetanolamina, teremos menos rebaixamento de tom, portanto, mais dificuldade para obter a cor clara.

Em um cabelo muito escuro, porém com a finalidade de um clareamento, devemos empregar o pó descolorante, pois só a força de rebaixamento de tom não será suficiente para atingir o objetivo desejado.

O QUE É IMPORTANTE PARA UMA BOA COLORAÇÃO?

- Utilizar sempre uma mistura de diferentes corantes, com a mesma afinidade de família química e alcalinidades semelhantes;
- Os produtos devem ser de fácil aplicação e rápida ação;
- Ser compatível com outros cosméticos capilares.